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Introduction-1

Role of migration in the propagation of epidemics ?

» simplest possible migration model:
closed network of -/M /oo queues

» simplest epidemic process:
the SIS model
> in the thermodynamic limit
to further simplify the problem
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Epidemic interpretation:

>

Individuals move from place (station) to place
places are indexed by, say 7Z

The overall density of individuals (mean number of
individuals per station) is 7

An individual stays at a place for a random time which is
exp. distributed with parameter ;. (migration rate)

The departure rate of individuals from a given place is
hence \ = nu

When it leaves a place, an individual migrates to a place
chosen independently and 'at random’

At each station, individuals are subject to the SIS
dynamics with parameters «,

Infections and recoveries take place in stations and
conditionally on the stations state (local interaction)
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Related work:

(1) The Contact Process on Deterministic Graphs
» In the absence of mobility, the problem was extensively
studied in the particle system literature Liggett 85
» There is a large corpus of results on infinite graphs with
finite degrees such as grids and regular trees

» On finite graphs, the main question is that of the phase
transition between a logarithmic and an exponential
growth of the time till extinction

» This was studied on deterministic graphs like finite grids
and regular trees
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(11) SIS on Finite Random Graphs

» Overview:
R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and
A. Vespignan (Rev. Mod. Phys., 2015)

» Book: M.E.J. Newman, 2015

» Review on the moment closure techniques:
C. Kuehn (Control of Self-Organizing Nonlinear
Systems, 2016)
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(111) The Contact Process on Infinite Random Graphs
The contact process was also studied on infinite random
graphs with unbounded degrees

» supercritical Bienaymé-Galton-Watson tree
R. Pemantle (Ann. Probab., 1992) where it was shown
that some critical values can be degenerate
» Euclidean point processes
» G. Ganesan (Adv. Appl. Probab., 2015)

» C.V. Hao (Combin., Probab. and Computing, 2018)
» L. Menard and A. Singh (Ann Sci ENS, 2016)
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(1IV) Mobile SIS Epidemics

» Basic model for SIS on graphs: agents perform a
random walk on the random graph and agents meeting
at a given point of the graph may infect each other
D. Figueiredo, G. lacobelli, and S. Shneer (J.
Stat.Physics, 2020) and the references therein

» On point processes
a computational framework for evaluating the role of
mobility on the propagation of epidemics, F. Baccelli and
N. Ramesan, (J. Math. Biology, January 2022)
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(0.1) M/M/oco Queue

» Input rate ), service rate i, number of customers ,(t),
t > 0, where z =1,(0)

» Positive recurrent continuous time Markov process with
countably many states

» Unique stationary distribution (stationary process)
M(t),t > 0 with MN(t) ~ Poisson(\/ )

» For all initial conditions z, exponentially fast coupling
convergence:

P(M,(u) =MN(u) for all u >t) >1— Cyexp(—Cat), t>0

where C;,C;, depend on z






(0.2) Closed symmetric network of M/M/oco queues

v

N queues, K = K(N) customers, service rate p

v

Next station chosen at random (w.p. 1/N)

v

No exogenous input / no exogenous output

v

Finite symmetric Markov chain, unique stationary
distribution which is multinomial (Gordon-Newell),

K! 1
ﬂ{n —k,} H,N:1 ki! W

where ) k; = K
Exponential convergence rate, for any initial state

v






(0.3) Thermodynamic Limit (TL) for the closed
network of M/M /oo queues

Let N — oo, K/N — 7 € (0,00)

» For any fixed r = 1,2, ..., the random processes
My(t),..., M, (t), t > 0 are asymptotically independent (as
processes) and any of them is as in the single M/M /oo
queue with input rate ) := nu and service rate p

» The natural parameterization is (7, 1), then A = npu






(1.1) SIS Reactor

M/M/co queue, input rate )\, service rate p
Now:

» each customer is either susceptible (S) or infected (1)

» X(t), number of susceptible

» Y(t), number of infected

» X(0) = X4(0) =x,Y(0) =Y, (0) =y, X(t) + Y(t) = N(t)
Input:

customer infected w.p. p, susceptible w.p. g =1—p
Infection-recovery mechanism:

> any customer:
S — | with rate aY(t), and | — S with rate
> total:
S — | with rate aX(t)Y(t), and | — S with rate 5Y(t)

Comment:
If we do not distinguish | and S, this is an M/M/co queue
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(1.2) SIS Reactor

Vector (X(t), Y(t)) is again positive recurrent, unique
stationary distribution, exponential convergence rate

» No product form
» Neither X(t) nor Y(t) Poisson
> Their means are unknown

Wave type PDE for Generating Function
®(x,y) = E[x*y"] of stationary process:
forall 0 <x<10<y<1,

(Aq(1 —x) + Ap(1 —y))®(x,y)
=p(1 = x)®x(x,y) + (1(1 — y) + B(x — y))Dy(x,y)
Fay(y — x)®xy(x,y)

We could not solve this PDE



(1.3) SIS Reactor

Rate Conservation ldentities:
First order:

Ap + aE[XY] = (u+ B)E[Y] or, equivalently,
Aq + BE[Y]= pE [X] + aE [XY]

Second order:

(A + 1+ B)E[Y] + aE[XY?] = (i + HE[Y?],
(Aq+ WE[X] + (@ + AEXY] = aE [X2Y] + uE[X’]

Higher order: ...
Conjectures: anti-association (numerical evidence)...



(1.4) SIS Reactor

Fraction of infected: p in input; p, = @ in output

(1) Fix strictly positive )\, i1, «, and
Input-output map p — po = g(p)
Thanks to coupling arguments:

(i) Function g(p) is strictly monotone increasing, strictly
concave, and differentiable, g(0) = 0 and g(1) <1
(ii) Fixed-point equation p = g(p)

» has only one solution p = 0 iff g'(0) <1

» has two solutions p = 0 and p* > 0 iff g'(0) > 1



(1.5) SIS Reactor

(2) Fix now any strictly positive 1, «, 3 and consider g/(0) as
a function of n = \/p

(iii) The value of g'(0) is a strictly increasing function of 7

(iv) There is a finite and strictly positive 1) = 1) (1, o, 3)
such that g'(0) =1

In particular,

B . i < (2(p+ B)a+2u+ B) —aB) B
2u+58 "¢ = 2ap(p + B)

» The lower bound does not depend on «

» These bounds may easily be improved



(2.1) Closed Network of SIS Reactors

Network:

» N queues, K = K(N) customers, service rate 1

> next station at random (w.p. 1/N), no input/no output
On top of that:

» at time O:
K, infected and Ks susceptible, K = K, + Kg

» SIS mechanism in each queue

Finite symmetric Markov chain, unique stationary
distribution, exponential convergence rate

Eventually: all customers become susceptible






(2.2) Thermodynamic Limit (TL) of Closed Networks

of SIS Reactors
Let N — oo, K/N — 7 € (0,00)
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(2.3) On TL of Closed Networks

Thermodynamic propagation of chaos ansatz
» The TLs pertain to a family of closed networks as above
» They are all infinite-dimensional Markov systems
» Can be seen as certain non-hom. Markov processes
» Broad range of asymptotic behaviours possible
We assume that the thermodynamic limit exists and satisfies
the following properties on any compact of time:
» Stations have independent dynamics
» In each station, the arrival point process of S (resp. |)

is (possibly non-homogeneous) Poisson, with these two
processes being independent

This set of properties will be referred to as the
Thermodynamic propagation of chaos ansatz



(2.4) On TL of Closed Networks

Definition
In any TL, we will say that
» there is survival if the associated Markov system has a
steady state distribution with a fraction 0 < p < 1 of
susceptible customers

» there is weak extinction if there is no such p

» there is strong extinction if, for all initial conditions, the
associated Markov system converges to a regime with
no infected customers



(2.5) TL of Closed Networks of SIS Reactors

Back to SIS Reactors:

Let 7(®) = ()(, a, B) be the solution to g'(0) =1

Theorem
If the SIS thermodynamic propagation of chaos ansatz holds,
then, in the SIS thermodynamic limit,

> there is survival if > 77£s’

» there is strong extinction if n < ngs)



(3.1) SIS-DOCS Reactor

Here DOCS = Departure on Change of State

» The SIS-DOCS reactor features a single station like in
the SIS case

» The departure rate of susceptible customers and of
infected customers is u

» The infection mechanism of the SIS model is replaced
by a simultaneous infection and departure mechanism
with the following characteristics:

» if the number of infected is Y (t), each susceptible gets
infected with rate oY (t) and, upon infection, it
immediately leaves the system for good

» each infected recovers with rate § and, upon infection, it
immediately leaves the system for good
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(3.2) SIS-DOCS Reactor

The associated PDE for the stationary generating function of
the general SIS-DOCS reactor is
(Aa(1 = x)+Ap(1 - y))®(x,y)
= (1 = x)®y(x,y) + V(1 - y)Py(x,y)
+ay(1 —x)®yy(x,y)
Here v =+

This wave-type equation can be solved



(3.3.) Properties of SIS-DOCS Reactor

v

The process of infected customers is autonomous

v

The stationary distribution of Y is Poisson \/v

v

The distribution of X is not Poisson
The solution of the PDE gives

v

A L we? (g 4y i yypo g
EX — f e V(u+a)2( t)t vtao +>\p(u+a)2 dt
v @ Jo



(3.4) Properties of SIS-DOCS Reactor

» Threshold néd) such that the fixed-point equation

Po = g(p) = p has a non-zero solution iff 1 > néd):

@ _ B o
T <1+2u+6>

» X and Y are dependent

» Their sum is stochastically smaller than a Poisson
random variable with parameter \/u

» Simple conservation equations:

Ap= rvEY
Ag= nEX 4+ aEXY



(3.5) Closed Network of SIS-DOCS Reactors

Closed queuing network with N stations and K customers

> If station n has X(")(t) susceptible and Y (t) infected
customers, each susceptible customer swaps to infected
with the instantaneous rate aY("(t) and upon infection,
it simultaneously leaves this station and is routed to one
of the N stations chosen at random

» Each infected customer becomes susceptible with rate j3;
upon recovery, it simultaneously leaves and is routed to
a station chosen at random

» As in the closed SIS network model, each customer
(infected or susceptible) also leaves the station with a
departure rate ;. and is then also routed to a station
chosen at random






(3.6) TL of closed SIS-DOCS networks

We again let N tend to infinity and K/N — 7




(3.7) TL of closed SIS-DOCS networks

In the thermodynamic limit, we have with necessity
aEXY = SEY

This obviously holds for Y = 0 a.s.
Based on the analysis of the exact expression for EX in the
SIS-DOCS reactor, we get:

Theorem

In the SIS-DOCS thermodynamic limit, if 3 < u, then
> there is survival if > néd)
> there is weak extinction if 1 < ngd)

Comment: Condition 5 < u is just technical, and we
conjecture that the same result holds without it



(3.8) SIS-AIR Reactor

AIR = Averaged Infection Rate.

» Open network of two M/M /oo stations

> Input rate A\

» Each customer is infected with probability p or
susceptible with probability q=1—p

» Service rate of any customer is p

» Every infected become susceptible with rate 5

» Difference with SIS: every susceptible becomes infected
with rate ay, where y is another parameter






(3.9) SIS-AIR Reactor

» Open Jackson network with product-form stationary
distribution, which is the product of two Poisson
distributions, with parameters % and %,
correspondingly

» From traffic equations, we get

B
A= Aq+ A
! 2+
A= Ap + A
2= Ap lu+04y
and
(4 ay)(B + pg)A

A\ =
T (ut B)(u + ay) — Bay

A
» Further, EX = MJF}W = % —y



(3.10) Closed SIS-AIR Network

Consider a closed network with N stations and K customers
Let

N
. 1 )
= (i)
ORI
Y@ (t): number of infected customers at station i at time t

Difference with SIS network: averaged infection rates: at
station i: aX;(t)Y(t) in place of aX;(t)Y;(t)






(3.11) TL of Closed SIS-AIR Networks




(3.12) TL for SIS-AIR

Let nﬁ"") =8
Theorem
Under SIS-AIR thermodynamic propagation of chaos ansatz

Q

> if n < nca), there is weak extinction
> if n > néa), there is survival
Given survival, in the stationary regime of the TL

Ex="
«
EY:n—é
«
* * ﬂ
1-p'=q" =—
na

X and Y are independent and Poisson



(4.1) System Comparison

We compare the TLs of the 3 models
> analytically

> numerically

We will say that system A is safer than system B if

i > ®



(4.2) Comparison of SIS TL and DOCS TL

Depending on parameters, either SIS or SIS-DOCS is safer

Comparison of ngs) and n((;d) forp=1,=1,and a=1
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(4.3) Comparison of SIS TL and AIR TL

Plain SIS is safer than SIS-AIR

W2l =

if there is a negative correlation between X and Y

The latter is our conjecture, supported by simulations
This is interesting because AIR is the type of mean-fields
that epidemiologists use in their modelling



(4.4) Comparison of SIS-DOCS TL and AIR TL

It directly follows from the expressions of 7cs that n&d) > nﬁa)

This means that SIS-DOCS is safer than AIR



(5) Dependence on Migration Rate

Fix strictly positive 7, o, and
Study the dependence in ;.
Partial results for

» Reactors

» TLs



(5.1) SIS Reactor

No monotonicity of g/(0) in 4 in general
here n=3,0=1,a=5
10 /‘,\7
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(5.2) Thermodynamic Limits

» SIS: open question

» DOCS:
@ _ B o
T <1+2u+5>

is a decreasing function of u:
increasing motion makes system less safe

> AIR:

does not depend on u



(6) Ongoing Research

v

Proof of the Poisson hypothesis (ansatz)

v

Full SIS phase diagram for other parameters than
population density

SIRS model (S - 1 - R — S)
Other spatial reactors with mobile customers

v

v



