

Introduction-1

Role of migration in the propagation of epidemics ?

- ▶ simplest possible migration model:
closed network of $\cdot/M/\infty$ queues
- ▶ simplest epidemic process:
the **SIS** model
- ▶ in the **thermodynamic limit**
to further simplify the problem

Introduction-2

Epidemic interpretation:

- ▶ Individuals move from place (station) to place
places are indexed by, say \mathbb{Z}
- ▶ The overall density of individuals (mean number of individuals per station) is η
- ▶ An individual stays at a place for a random time which is exp. distributed with parameter μ (migration rate)
- ▶ The departure rate of individuals from a given place is hence $\lambda = \eta\mu$
- ▶ When it leaves a place, an individual migrates to a place chosen independently and 'at random'
- ▶ At each station, individuals are subject to the SIS dynamics with parameters α, β
- ▶ Infections and recoveries take place in stations and conditionally on the stations state (local interaction)

Introduction-3

Related work:

(I) The Contact Process on Deterministic Graphs

- ▶ In the absence of mobility, the problem was extensively studied in the particle system literature [Liggett 85](#)
- ▶ There is a large corpus of results on infinite graphs with finite degrees such as grids and regular trees
- ▶ On finite graphs, the main question is that of the phase transition between a logarithmic and an exponential growth of the time till extinction
- ▶ This was studied on deterministic graphs like finite grids and regular trees

Introduction-4

(II) SIS on Finite Random Graphs

- ▶ Overview:
R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and
A. Vespignan (Rev. Mod. Phys., 2015)
- ▶ Book: M.E.J. Newman, 2015
- ▶ Review on the moment closure techniques:
C. Kuehn (Control of Self-Organizing Nonlinear
Systems, 2016)

Introduction-5

(III) The Contact Process on Infinite Random Graphs

The contact process was also studied on infinite random graphs with unbounded degrees

- ▶ supercritical Bienaym  -Galton-Watson tree
R. Pemantle (Ann. Probab., 1992) where it was shown that some critical values can be degenerate
- ▶ Euclidean point processes
 - ▶ G. Ganesan (Adv. Appl. Probab., 2015)
 - ▶ C.V. Hao (Combin., Probab. and Computing, 2018)
 - ▶ L. Menard and A. Singh (Ann Sci ENS, 2016)

Introduction-6

(IV) Mobile SIS Epidemics

- ▶ Basic model for SIS on graphs: agents perform a random walk on the random graph and agents meeting at a given point of the graph may infect each other
[D. Figueiredo, G. Iacobelli, and S. Shneer \(J. Stat. Physics, 2020\)](#) and the references therein
- ▶ On point processes
a computational framework for evaluating the role of mobility on the propagation of epidemics, [F. Baccelli and N. Ramesan, \(J. Math. Biology, January 2022\)](#)

Outline

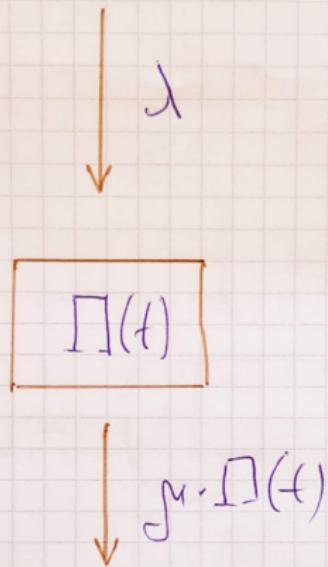
- ▶ (0) Preliminaries: $M/M/\infty$ queue and networks
- ▶ (1) SIS (Susceptible-Infected-Susceptible) Reactor
- ▶ (2) Closed Network of SIS Reactors:
 - ▶ Its TL (Thermodynamic Limit)
 - ▶ TL Phase Diagram w.r.t. Population Density
- ▶ (3) Related Models (DOCS and AIR, and their TL's)
- ▶ (4) Comparison of Models
- ▶ (5) Dependence on Migration Rate
- ▶ (6) Open Questions

(0.1) M/M/ ∞ Queue

- ▶ Input rate λ , service rate μ , number of customers $\Pi_z(t)$, $t \geq 0$, where $z = \Pi_z(0)$
- ▶ Positive recurrent continuous time Markov process with countably many states
- ▶ Unique stationary distribution (stationary process)
 $\Pi(t), t \geq 0$ with $\Pi(t) \sim \text{Poisson}(\lambda/\mu)$
- ▶ For all initial conditions z , exponentially fast coupling convergence:

$$\mathbf{P}(\Pi_z(u) = \Pi(u) \text{ for all } u \geq t) \geq 1 - C_1 \exp(-C_2 t), \quad t \geq 0$$

where C_1, C_2 depend on z



$$\Pi(t) \sim \text{Pois}(\eta)$$

$$\eta = \lambda / \mu$$

Fig. 1 $M/M/\infty$ queue

(0.2) Closed symmetric network of M/M/ ∞ queues

- ▶ N queues, $K \equiv K(N)$ customers, service rate μ
- ▶ Next station chosen at random (w.p. $1/N$)
- ▶ No exogenous input / no exogenous output
- ▶ Finite symmetric Markov chain, unique stationary distribution which is multinomial (Gordon-Newell),

$$P\left(\bigcap_{i=1}^N \{\Pi_i(t) = k_i\}\right) = \frac{K!}{\prod_{i=1}^N k_i!} \cdot \frac{1}{N^K}$$

where $\sum k_i = K$

- ▶ Exponential convergence rate, for any initial state

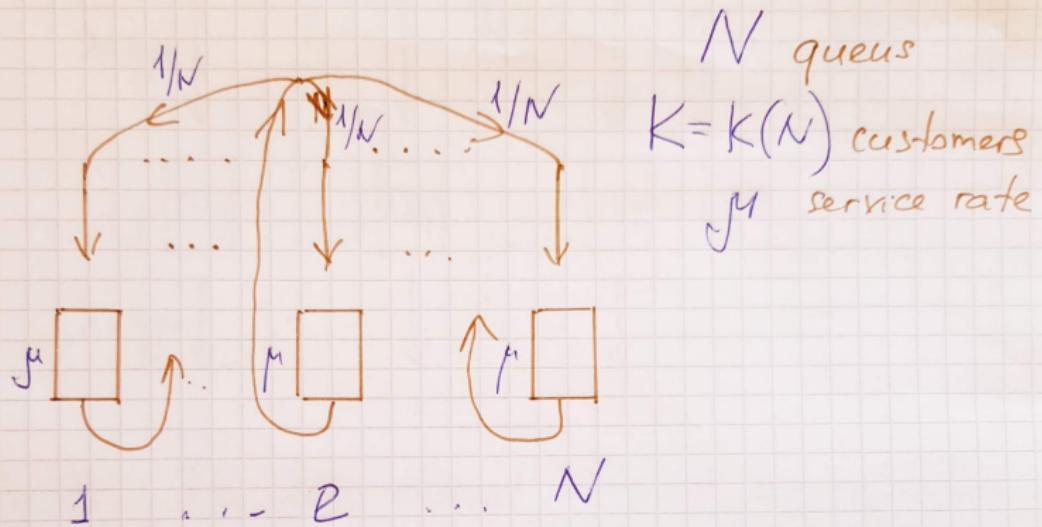


Fig. 2 Closed network of $M/M/\infty$ queues

(0.3) Thermodynamic Limit (TL) for the closed network of $M/M/\infty$ queues

Let $N \rightarrow \infty$, $K/N \rightarrow \eta \in (0, \infty)$

- ▶ For any fixed $r = 1, 2, \dots$, the random processes $\Pi_1(t), \dots, \Pi_r(t)$, $t \geq 0$ are asymptotically independent (as processes) and any of them is as in the single $M/M/\infty$ queue with input rate $\lambda := \eta\mu$ and service rate μ
- ▶ The natural parameterization is (η, μ) , then $\lambda = \eta\mu$

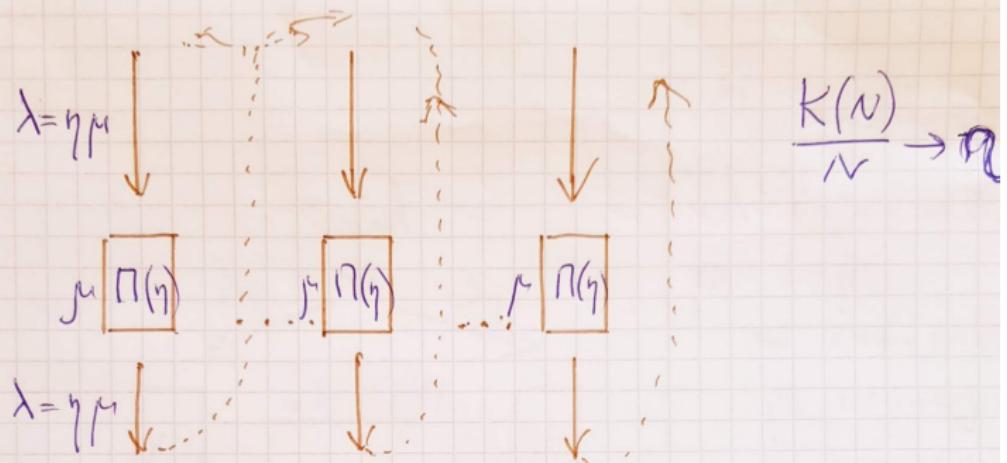


Fig. 3 TL for closed network of $M/M/\infty$ queues.

(1.1) SIS Reactor

$M/M/\infty$ queue, input rate λ , service rate μ

Now:

- ▶ each customer is either *susceptible (S)* or *infected (I)*
- ▶ $X(t)$, number of susceptible
- ▶ $Y(t)$, number of infected
- ▶ $X(0) \equiv X_x(0) = x$, $Y(0) \equiv Y_y(0) = y$, $X(t) + Y(t) = \Pi(t)$

Input:

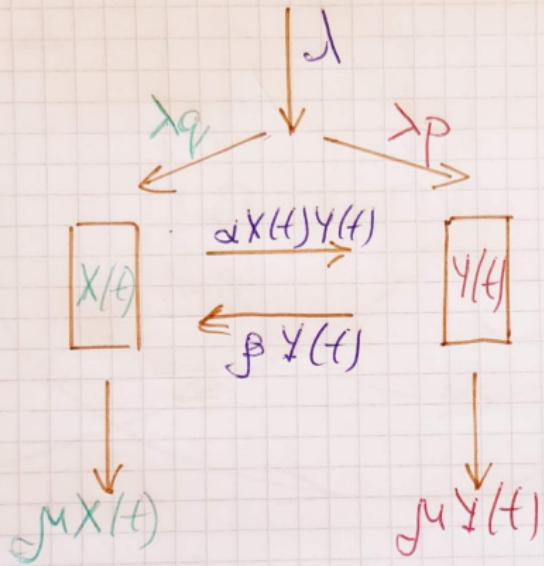
customer *infected w.p. p* , *susceptible w.p. $q = 1 - p$*

Infection-recovery mechanism:

- ▶ any customer:
 $S \rightarrow I$ with rate $\alpha Y(t)$, and $I \rightarrow S$ with rate β
- ▶ total:
 $S \rightarrow I$ with rate $\alpha X(t)Y(t)$, and $I \rightarrow S$ with rate $\beta Y(t)$

Comment:

If we do not distinguish I and S, this is an $M/M/\infty$ queue



Parameters:

λ input rate

$P = 1 - p$
 \approx inf. rate

β recovery r

μ service rate

Fig. 4 SIS reactor

(1.2) SIS Reactor

Vector $(X(t), Y(t))$ is again positive recurrent, unique stationary distribution, exponential convergence rate

- ▶ No product form
- ▶ Neither $X(t)$ nor $Y(t)$ Poisson
- ▶ Their means are unknown

Wave type PDE for Generating Function

$\Phi(x, y) = E[x^X y^Y]$ of stationary process:

for all $0 \leq x \leq 1, 0 \leq y \leq 1$,

$$\begin{aligned} & (\lambda q(1-x) + \lambda p(1-y))\Phi(x, y) \\ & = \mu(1-x)\Phi_x(x, y) + (\mu(1-y) + \beta(x-y))\Phi_y(x, y) \\ & + \alpha y(y-x)\Phi_{xy}(x, y) \end{aligned}$$

We could not solve this PDE

(1.3) SIS Reactor

Rate Conservation Identities:

First order:

$$\lambda p + \alpha E[X Y] = (\mu + \beta) E[Y] \quad \text{or, equivalently,}$$
$$\lambda q + \beta E[Y] = \mu E[X] + \alpha E[X Y]$$

Second order:

$$(\lambda p + \mu + \beta) E[Y] + \alpha E[X Y^2] = (\mu + \beta) E[Y^2],$$
$$(\lambda q + \mu) E[X] + (\alpha + \beta) E[X Y] = \alpha E[X^2 Y] + \mu E[X^2]$$

Higher order: ...

Conjectures: anti-association (numerical evidence)...

(1.4) SIS Reactor

Fraction of infected: p in input; $p_o = \frac{\mu EY}{\lambda}$ in output

(1) Fix strictly positive λ, μ, α , and β

Input-output map $p \rightarrow p_o \equiv g(p)$

Thanks to coupling arguments:

(i) Function $g(p)$ is strictly monotone increasing, strictly concave, and differentiable, $g(0) = 0$ and $g(1) < 1$

(ii) Fixed-point equation $p = g(p)$

- ▶ has only one solution $p = 0$ iff $g'(0) \leq 1$
- ▶ has two solutions $p = 0$ and $p^* > 0$ iff $g'(0) > 1$

(1.5) SIS Reactor

(2) Fix now any strictly positive μ, α, β and consider $g'(0)$ as a function of $\eta = \lambda/\mu$

(iii) The value of $g'(0)$ is a strictly increasing function of η

(iv) There is a finite and strictly positive $\eta^{(s)} = \eta^{(s)}(\mu, \alpha, \beta)$ such that $g'(0) = 1$

In particular,

$$\frac{\beta}{2\mu + 5\beta} \leq \eta_c^{(s)} \leq \frac{(2(\mu + \beta)(\alpha + 2\mu + \beta) - \alpha\beta)\beta}{2\alpha\mu(\mu + \beta)}$$

- ▶ The lower bound does not depend on α
- ▶ These bounds may easily be improved

(2.1) Closed Network of SIS Reactors

Network:

- ▶ N queues, $K \equiv K(N)$ customers, service rate μ
- ▶ next station at random (w.p. $1/N$), no input/no output

On top of that:

- ▶ at time 0:
 K_I infected and K_S susceptible, $K = K_I + K_S$
- ▶ SIS mechanism in each queue

Finite symmetric Markov chain, unique stationary distribution, exponential convergence rate

Eventually: all customers become susceptible

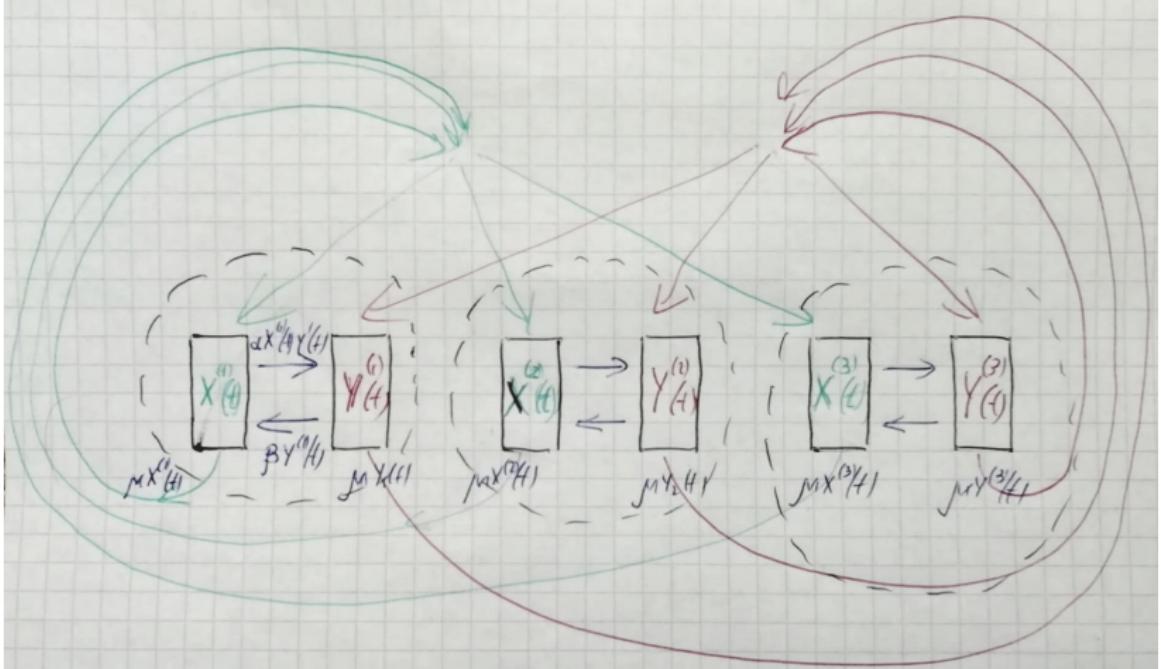
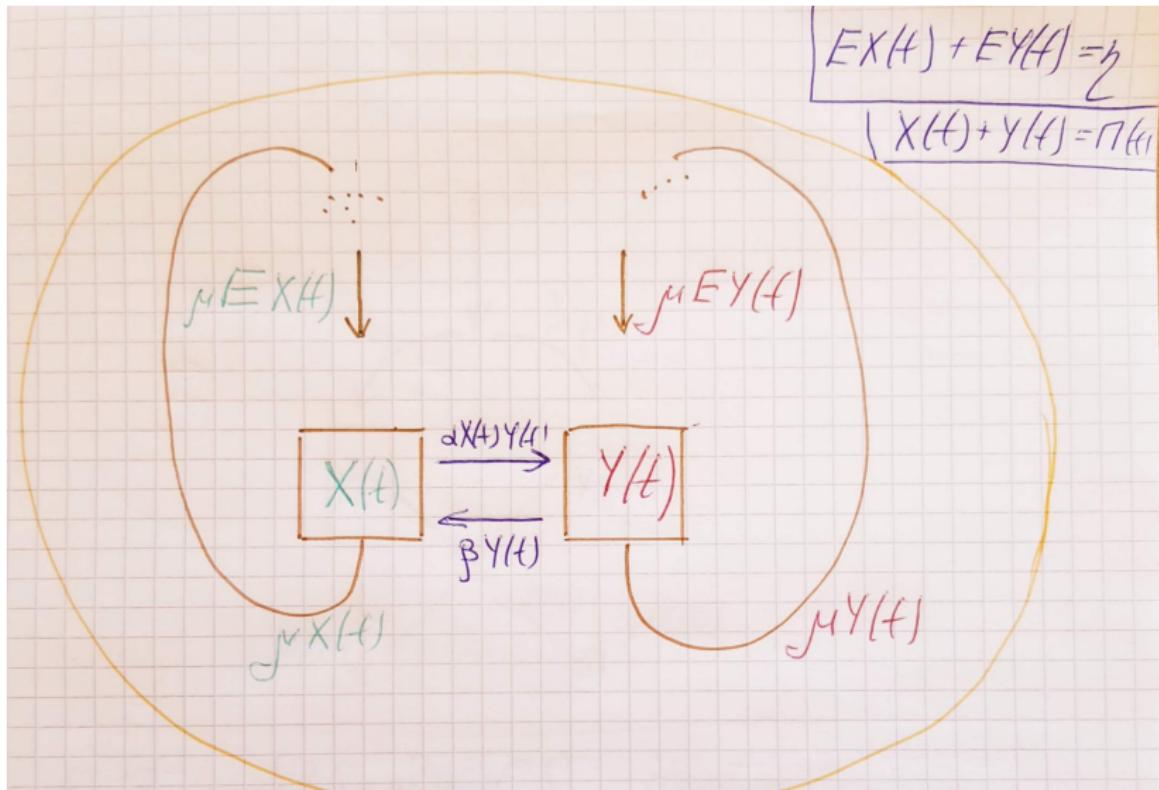


Fig.5. Closed network of $N=3$ SIS reactors.

(2.2) Thermodynamic Limit (TL) of Closed Networks of SIS Reactors

Let $N \rightarrow \infty, K/N \rightarrow \eta \in (0, \infty)$



(2.3) On TL of Closed Networks

Thermodynamic propagation of chaos ansatz

- ▶ The TLs pertain to a family of closed networks as above
- ▶ They are all infinite-dimensional Markov systems
- ▶ Can be seen as certain non-hom. Markov processes
- ▶ Broad range of asymptotic behaviours possible

We assume that the thermodynamic limit exists and satisfies the following properties on any compact of time:

- ▶ Stations have independent dynamics
- ▶ In each station, the arrival point process of S (resp. I) is (possibly non-homogeneous) Poisson, with these two processes being independent

This set of properties will be referred to as the
Thermodynamic propagation of chaos ansatz

(2.4) On TL of Closed Networks

Definition

In any TL, we will say that

- ▶ there is **survival** if the associated Markov system has a steady state distribution with a fraction $0 < p < 1$ of susceptible customers
- ▶ there is **weak extinction** if there is no such p
- ▶ there is **strong extinction** if, for all initial conditions, the associated Markov system converges to a regime with no infected customers

(2.5) TL of Closed Networks of SIS Reactors

Back to SIS Reactors:

Let $\eta^{(s)} = \eta^{(s)}(\mu, \alpha, \beta)$ be the solution to $g'(0) = 1$

Theorem

If the SIS thermodynamic propagation of chaos ansatz holds, then, in the SIS thermodynamic limit,

- ▶ there is **survival** if $\eta > \eta_c^{(s)}$
- ▶ there is **strong extinction** if $\eta \leq \eta_c^{(s)}$

(3.1) SIS-DOCS Reactor

Here DOCS = Departure on Change of State

- ▶ The SIS-DOCS reactor features a single station like in the SIS case
- ▶ The departure rate of susceptible customers and of infected customers is μ
- ▶ The infection mechanism of the SIS model is replaced by a simultaneous infection and departure mechanism with the following characteristics:
 - ▶ if the number of infected is $Y(t)$, each susceptible gets infected with rate $\alpha Y(t)$ and, upon infection, it immediately leaves the system for good
 - ▶ each infected recovers with rate β and, upon infection, it immediately leaves the system for good

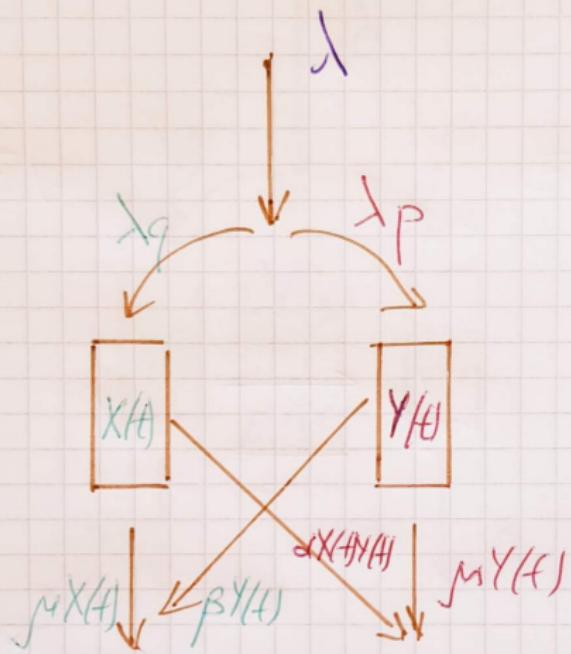


Fig. 7

SIS-2DCS reactor

(3.2) SIS-DOCS Reactor

The associated PDE for the stationary generating function of the general SIS-DOCS reactor is

$$\begin{aligned} & (\lambda q(1-x) + \lambda p(1-y))\Phi(x, y) \\ &= \mu(1-x)\Phi_x(x, y) + \nu(1-y)\Phi_y(x, y) \\ &+ \alpha y(1-x)\Phi_{xy}(x, y) \end{aligned}$$

Here $\nu = \mu + \beta$

This wave-type equation can be solved

(3.3.) Properties of SIS-DOCS Reactor

- ▶ The process of infected customers is autonomous
- ▶ The stationary distribution of Y is Poisson λ/ν
- ▶ The distribution of X is not Poisson
- ▶ The solution of the PDE gives

$$EX = \frac{\lambda q}{\nu + \alpha} \int_0^1 e^{-\frac{\lambda p \alpha^2}{\nu(\nu+\alpha)^2}(1-t)} t^{\frac{\mu}{\nu+\alpha} + \lambda p \frac{\alpha}{(\nu+\alpha)^2} - 1} dt$$

(3.4) Properties of SIS-DOCS Reactor

- ▶ Threshold $\eta_c^{(d)}$ such that the fixed-point equation $\mathbf{p}_0 \equiv \mathbf{g}(\mathbf{p}) = \mathbf{p}$ has a non-zero solution iff $\eta > \eta_c^{(d)}$:

$$\eta_c^{(d)} = \frac{\beta}{\alpha} \left(\mathbf{1} + \frac{\alpha}{2\mu + \beta} \right)$$

- ▶ \mathbf{X} and \mathbf{Y} are dependent
- ▶ Their sum is stochastically smaller than a Poisson random variable with parameter λ/μ
- ▶ Simple conservation equations:

$$\lambda \mathbf{p} = \nu \mathbf{EY}$$

$$\lambda \mathbf{q} = \mu \mathbf{EX} + \alpha \mathbf{EXY}$$

(3.5) Closed Network of SIS-DOCS Reactors

Closed queuing network with N stations and K customers

- ▶ If station n has $X^{(n)}(t)$ susceptible and $Y^{(n)}(t)$ infected customers, each susceptible customer swaps to infected with the instantaneous rate $\alpha Y^{(n)}(t)$ and upon infection, it simultaneously leaves this station and is routed to one of the N stations chosen at random
- ▶ Each infected customer becomes susceptible with rate β ; upon recovery, it simultaneously leaves and is routed to a station chosen at random
- ▶ As in the closed SIS network model, each customer (infected or susceptible) also leaves the station with a departure rate μ and is then also routed to a station chosen at random

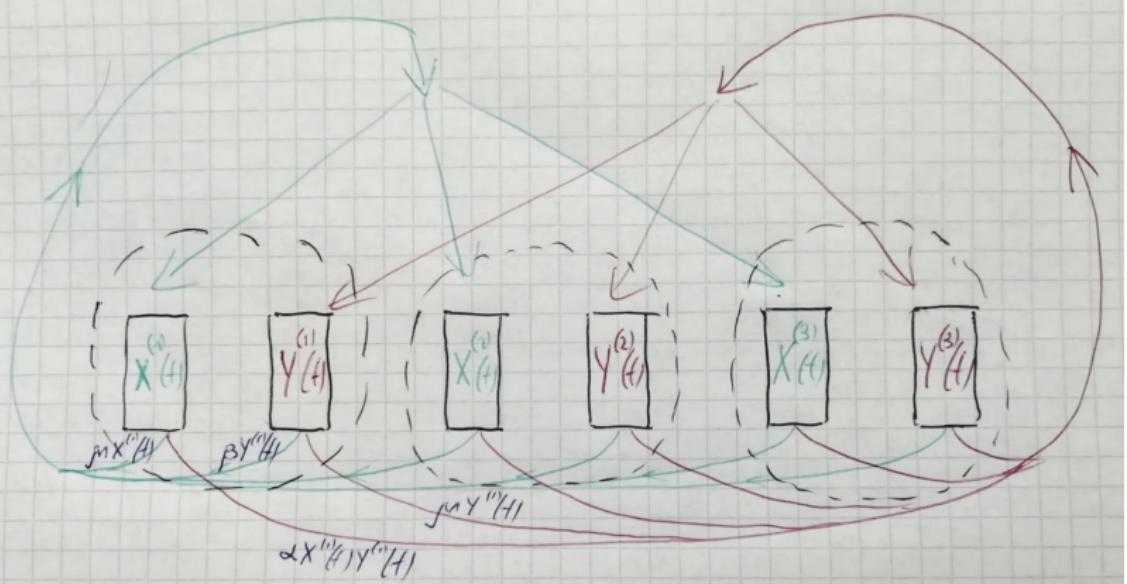
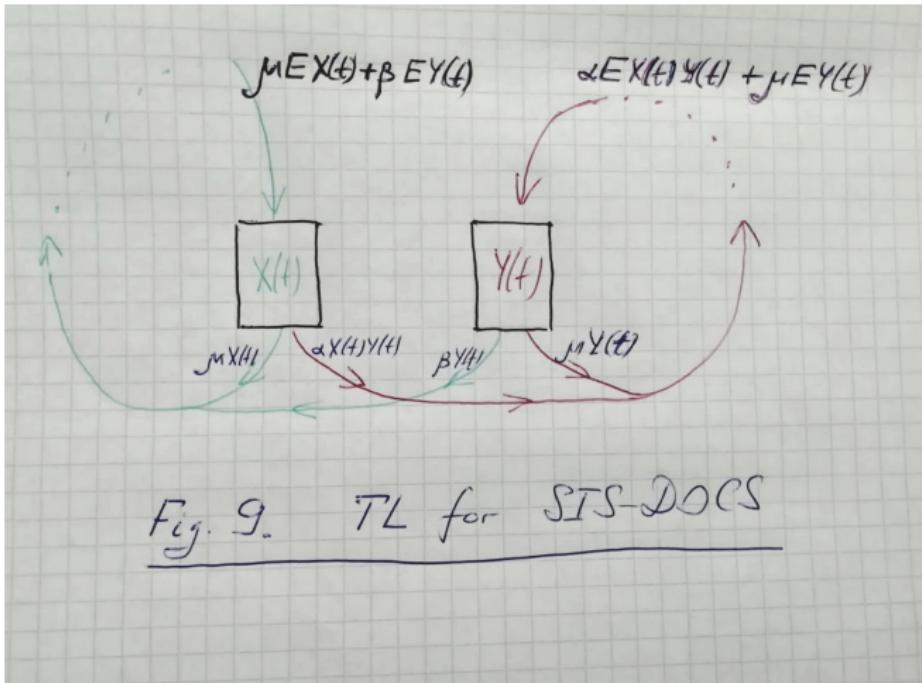


Fig. 8. Closed network of $N=3$
SIS-DOCS reactors

(3.6) TL of closed SIS-DOCS networks

We again let N tend to infinity and $K/N \rightarrow \eta$



(3.7) TL of closed SIS-DOCS networks

In the thermodynamic limit, we have with necessity

$$\alpha \mathbf{E} \mathbf{X} \mathbf{Y} = \beta \mathbf{E} \mathbf{Y}$$

This obviously holds for $\mathbf{Y} = \mathbf{0}$ a.s.

Based on the analysis of the exact expression for $\mathbf{E} \mathbf{X}$ in the SIS-DOCS reactor, we get:

Theorem

In the SIS-DOCS thermodynamic limit, if $\beta < \mu$, then

- ▶ there is survival if $\eta > \eta_c^{(d)}$
- ▶ there is weak extinction if $\eta \leq \eta_c^{(d)}$

Comment: Condition $\beta < \mu$ is just technical, and we conjecture that the same result holds without it

(3.8) SIS-AIR Reactor

AIR = Averaged Infection Rate.

- ▶ Open network of two $M/M/\infty$ stations
- ▶ Input rate λ
- ▶ Each customer is infected with probability p or susceptible with probability $q = 1 - p$
- ▶ Service rate of any customer is μ
- ▶ Every infected become susceptible with rate β
- ▶ **Difference with SIS:** every susceptible becomes infected with rate αy , where y is another parameter

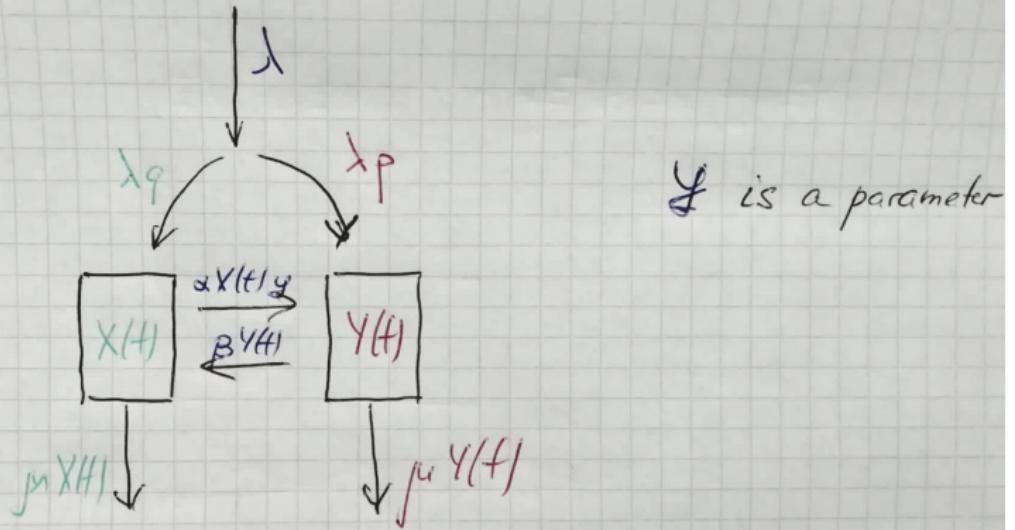


Fig. 10. SIS-AIR reactor

(3.9) SIS-AIR Reactor

- ▶ Open Jackson network with product-form stationary distribution, which is the product of two Poisson distributions, with parameters $\frac{\lambda_1}{\mu}$ and $\frac{\lambda_2}{\mu}$, correspondingly
- ▶ From traffic equations, we get

$$\lambda_1 = \lambda \mathbf{q} + \lambda_2 \frac{\beta}{\mu + \beta}$$

$$\lambda_2 = \lambda \mathbf{p} + \lambda_1 \frac{\alpha \mathbf{y}}{\mu + \alpha \mathbf{y}}$$

and

$$\lambda_1 = \frac{(\mu + \alpha \mathbf{y})(\beta + \mu \mathbf{q})\lambda}{(\mu + \beta)(\mu + \alpha \mathbf{y}) - \beta \alpha \mathbf{y}}$$

- ▶ Further, $\mathbf{E} \mathbf{X} = \frac{\lambda_1}{\mu + \alpha \mathbf{y}} = \frac{\lambda}{\mu} - \mathbf{y}$

(3.10) Closed SIS-AIR Network

Consider a closed network with N stations and K customers
Let

$$\hat{Y}(t) = \frac{1}{N} \sum_{i=1}^N Y^{(i)}(t)$$

$Y^{(i)}(t)$: number of infected customers at station i at time t

Difference with SIS network: averaged infection rates: at station i : $\alpha X_i(t)\hat{Y}(t)$ in place of $\alpha X_i(t)Y_i(t)$

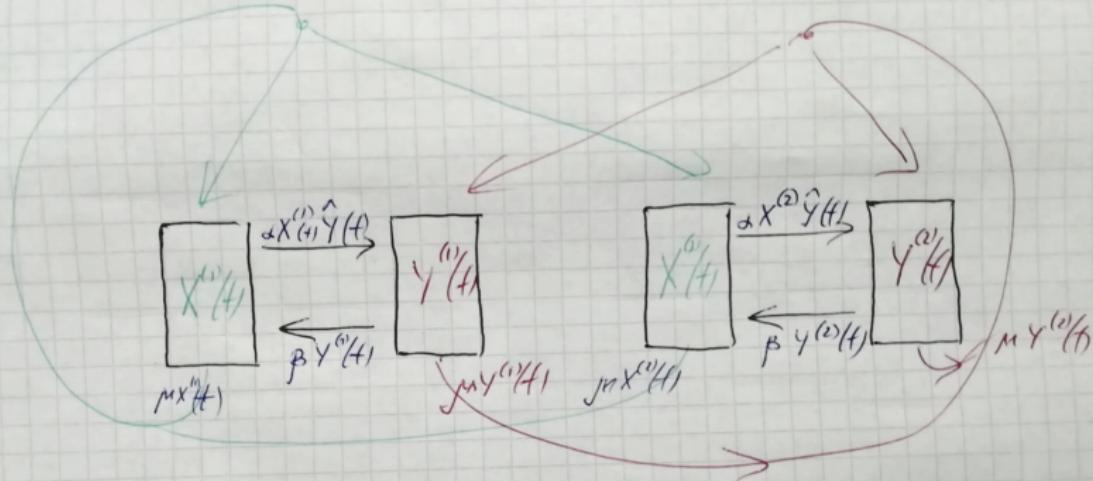


Fig. 11. Closed network of $N=2$
SIS-AIR reactors.

(3.11) TL of Closed SIS-AIR Networks

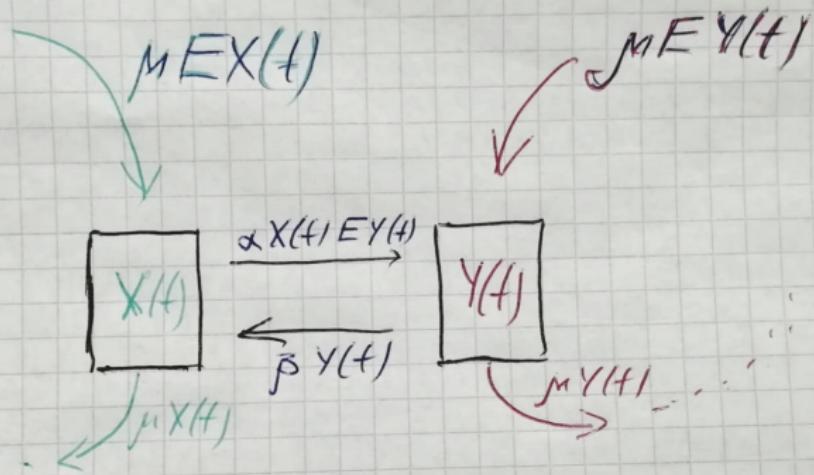


Fig. 12 TL for SIS-AIR

(3.12) TL for SIS-AIR

Let $\eta_c^{(a)} := \frac{\beta}{\alpha}$

Theorem

Under SIS-AIR thermodynamic propagation of chaos ansatz

- ▶ if $\eta \leq \eta_c^{(a)}$, there is weak extinction
- ▶ if $\eta > \eta_c^{(a)}$, there is survival

Given survival, in the stationary regime of the TL

$$\mathbf{E}X = \frac{\beta}{\alpha}$$

$$\mathbf{E}Y = \eta - \frac{\beta}{\alpha}$$

$$1 - p^* = q^* = \frac{\beta}{\eta\alpha}$$

X and **Y** are independent and Poisson

(4.1) System Comparison

We compare the TLs of the 3 models

- ▶ analytically
- ▶ numerically

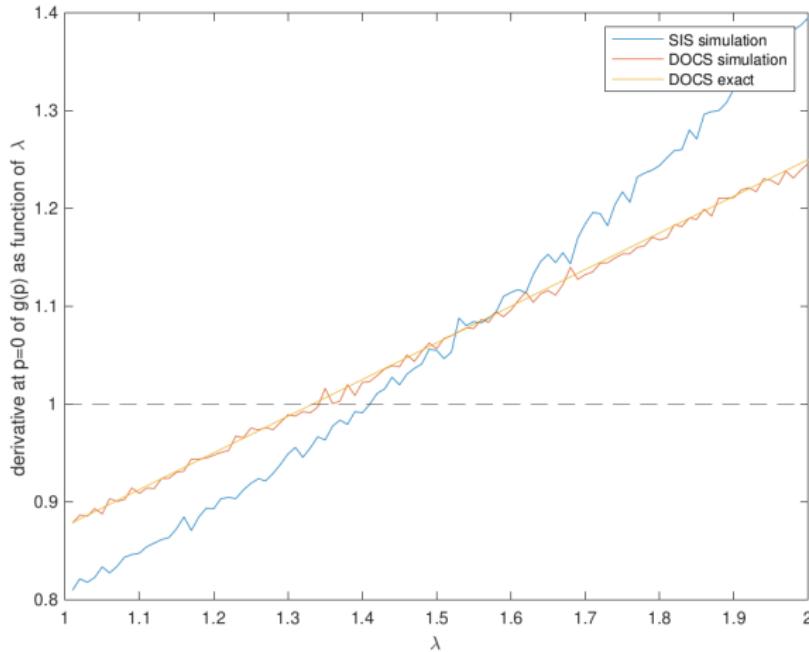
We will say that system A is **safer** than system B if

$$\eta_c^{(A)} \geq \eta_c^{(B)}$$

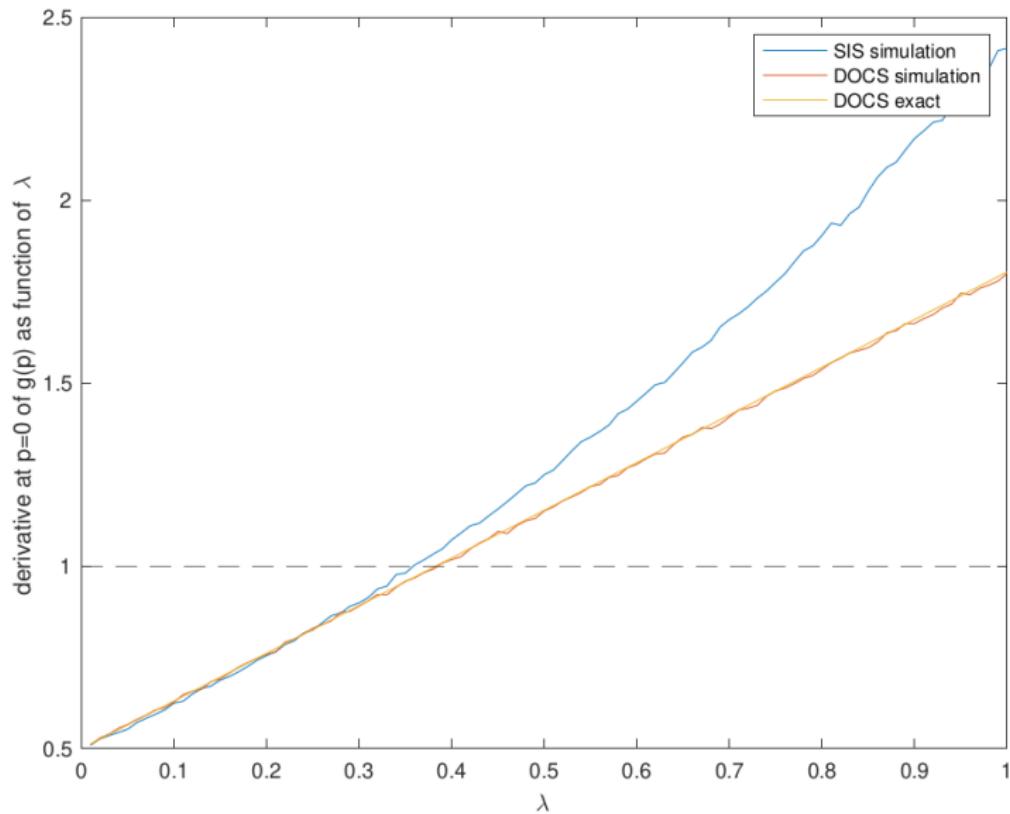
(4.2) Comparison of SIS TL and DOCS TL

Depending on parameters, either SIS or SIS-DOCS is safer

Comparison of $\eta_c^{(s)}$ and $\eta_c^{(d)}$ for $\mu = 1$, $\beta = 1$, and $\alpha = 1$



Comparison of $\eta_c^{(s)}$ and $\eta_c^{(d)}$ for $\mu = 1$, $\beta = 1$, and $\alpha = 20$



(4.3) Comparison of SIS TL and AIR TL

Plain SIS is safer than SIS-AIR

$$\eta_c^{(s)} \geq \eta_c^{(a)} \equiv \frac{\beta}{\alpha}$$

if there is a negative correlation between X and Y

The latter is our conjecture, supported by simulations

This is interesting because AIR is the type of mean-fields that epidemiologists use in their modelling

(4.4) Comparison of SIS-DOCS TL and AIR TL

It directly follows from the expressions of η_c s that $\eta_c^{(d)} > \eta_c^{(a)}$

This means that SIS-DOCS is safer than AIR

(5) Dependence on Migration Rate

Fix strictly positive η, α , and β

Study the dependence in μ

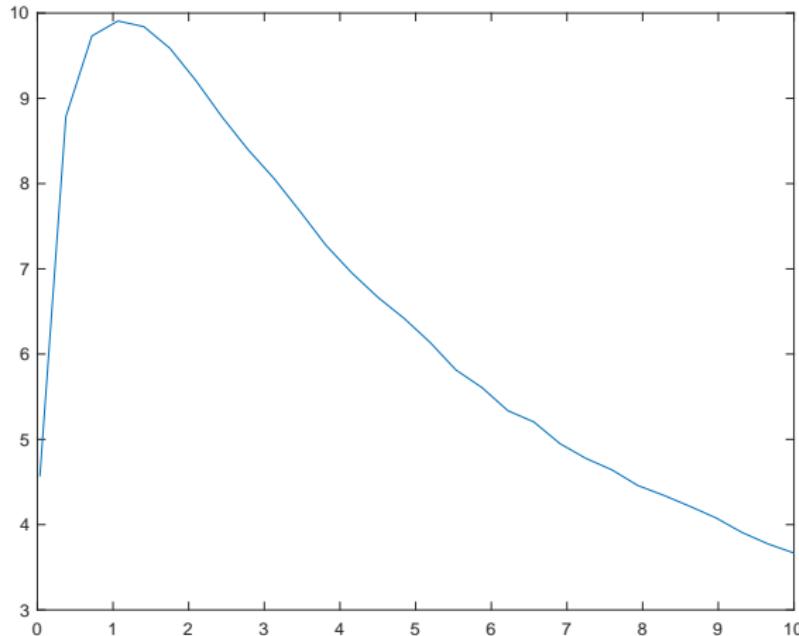
Partial results for

- ▶ Reactors
- ▶ TLs

(5.1) SIS Reactor

No monotonicity of $g'(0)$ in μ in general

here $\eta = 3, \beta = 1, \alpha = 5$



(5.2) Thermodynamic Limits

- ▶ SIS: open question
- ▶ DOCS:

$$\eta_c^{(d)} = \frac{\beta}{\alpha} \left(1 + \frac{\alpha}{2\mu + \beta} \right)$$

is a decreasing function of μ :
increasing motion makes system less safe

- ▶ AIR:

$$\eta_c^{(a)} = \frac{\beta}{\alpha}$$

does not depend on μ

(6) Ongoing Research

- ▶ Proof of the Poisson hypothesis (ansatz)
- ▶ Full SIS phase diagram for other parameters than population density
- ▶ SIRS model ($S \rightarrow I \rightarrow R \rightarrow S$)
- ▶ Other spatial reactors with mobile customers