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Fundamental Problem
Decentralized control of large-scale parallel-server systems

Design objectives:
➔ Minimization of congestion (eg, delays) and operational costs (eg, energy usage)
➔ Simple policies: low complexity, scalability
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Load Balancing and Auto-scaling

Assumptions: - The mean demand 𝜆N  is proportional to the nominal service capacity N
                             - Load balancing and auto-scaling operate within the same timescale

Challenge: Design algorithms that achieve low wait and energy consumption for large N

In math: Can we make latency go to zero with no waste of energy in the limit where N→∞ ?

Control
𝜆N

Auto-scaling: 
Scale up/down the net service capacity  in 
response to the current load

Pool of OFF servers

N

1

K

Pool of ON servers

Load balancing:
Dispatch jobs to ON servers

K+1



Some Examples

Supermarket checkout lines Call centers Data centers

In France, 10% of the electricity produced is consumed 
only to meet the needs of data centres 
[source: https://corporate.ovhcloud.com]

https://corporate.ovhcloud.com/en/newsroom/news/distiller-research-program/
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Classic algorithms: each incoming job is dispatched to a (unique) queue
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Huge Literature
Random
Round-Robin, RR
Join-the-shortest-queue, JSQ(N)
Power-of-d, JSQ(d)
Join-the-idle-queue
Least Left Workload
Size Interval Task Allocation, SITA

… and a lot more
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Power-of-d : Non-zero wait but low complexity

Power-of-d  ”with memory”: Low complexity and zero wait if 𝜆<1-1/d, excellent performance otherwise 
[J. Anselmi, F. Dufour Power-of-d-Choices with Memory: Fluid Limit and Optimality, Mathematics of Operations Research, 2020]
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Power-of-d  ”with memory”: Low complexity and zero wait if 𝜆<1-1/d, excellent performance otherwise 
[J. Anselmi, F. Dufour Power-of-d-Choices with Memory: Fluid Limit and Optimality, Mathematics of Operations Research, 2020]

RR+SITA: Low complexity and zero wait if job sizes are known 
[J. Anselmi Combining Size-Based Load Balancing with Round-Robin for Scalable Low Latency, IEEE Transactions on Parallel and Distributed Systems, 2019]
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Random
Round-Robin, RR
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Least Left Workload
Size Interval Task Allocation, SITA

… and a lot more

Remark: All these load balancing algorithms are stable if and only if 𝜆<1. Can we do better?



Motivation: to mitigate the effect of stragglers

Recent Approach: Replicate
[The Tail at Scale, Google Research] 

Two underlying principles

Either replicate (as in Google’s BigTable):

    
1) “replicate a job upon its arrival and use the results from whichever replica responds first”

or speculate (as in Apache Spark and Hadoop MapReduce):

    2)    “replicate a job as soon as the system detects it as a straggler” 



Motivation: to mitigate the effect of stragglers

Recent Approach: Replicate
[The Tail at Scale, Google Research] 

Two underlying principles

Either replicate (as in Google’s BigTable):

    
1) “replicate a job upon its arrival and use the results from whichever replica responds first”

or speculate (as in Apache Spark and Hadoop MapReduce):

    2)    “replicate a job as soon as the system detects it as a straggler” 

Which approach provides the best results?



Speculative Load Balancing

Dispatcher

min(𝜂1,𝜏)
𝜂1< 𝜏 ?

Yes, job completed

No, re-route

𝜂2
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Theorem. The system is stable iff

[J. Anselmi and N. Walton Stability and Optimization of Speculative Queueing Networks, IEEE Transactions on Networking (to appear)]

job timeout
job service time, E[𝜂1]=E[𝜂2]=1
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Theorem. The system is stable iff

[J. Anselmi and N. Walton Stability and Optimization of Speculative Queueing Networks, IEEE Transactions on Networking (to appear)]

Remark. The stability regions of speculative load balancing, ρ(𝜏)<1, and standard 

load balancing,  𝜆<1, are different!

job timeout
job service time, E[𝜂1]=E[𝜂2]=1



Speculation vs Standard Load Balancing
Service times at server i: ηi = Si X  —  where Si =”server slowdown” and X=”job intrinsic size”



Speculation vs Replication

⇒ Speculation provides a larger stability region!

Replication strategies: Cancel-on-Complete-d (CoC-d) and Cancel-on-Start-d (CoS-d)
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Load Balancing and Auto-scaling

𝜆N

Pool of ON servers

Load balancing
𝜆N

Auto-scaling

N servers max

Pool of ON servers

Pool of INIT servers

Load balancing

AWS Lambda, Azure Functions, IBM 
Cloud Functions, Apache OpenWhisk

⇒ several research works

Some theoretical work
[Borst et al. 2017, Clausen et al. 2021]

?
Knative (Google Cloud Run)

`

⇒ no theoretical work (AFAIK!)

Centralized Decentralized

Synchronous

Asynchronous

Pool of OFF servers

Pool of INIT servers

Pool of OFF servers

Auto-scaling

N servers max



Asynchronous Load Balancing and Auto-scaling

Challenge
To investigate the dynamics of the serverless 
platform Knative to help the platform user to 
design and efficiently evaluate the performance 
of different scaling rules.

DREO: Delay and Relative Energy Optimality 
User-perceived delay and the relative energy wastage 
induced by idle servers vanish as N→∞
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Asynchronous Load Balancing and Auto-scaling

Challenge
To investigate the dynamics of the serverless 
platform Knative to help the platform user to 
design and efficiently evaluate the performance 
of different scaling rules.

Theorem (Optimal Design). DREO is guaranteed by using Join-the-Idle-Queue and a scale-up 
rate that is zero if and only if 𝜆 exceeds the overall rate at which servers become idle-on, i.e., idle 
and active.
[J. Anselmi Asynchronous Load Balancing and Auto-scaling: Mean-field Limit and Optimal Design (submitted) https://arxiv.org/abs/2204.02352]

DREO: Delay and Relative Energy Optimality 
User-perceived delay and the relative energy wastage 
induced by idle servers vanish as N→∞
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Pool of INIT servers
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https://arxiv.org/abs/2204.02352

