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Fundamental Problem

Decentralized control of large-scale parallel-server systems
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Design objectives:

-> Minimization of congestion (eg, delays) and operational costs (eg, energy usage)
- Simple policies: low complexity, scalability



Load Balancing and Auto-scaling
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Auto-scaling:
Scale up/down the net service capacity in
response to the current load

Challenge: Design algorithms that achieve low wait and energy consumption for large N
In math: Can we make latency go to zero with no waste of energy in the limit where N—« ?

Assumptions: - The mean demand AN is proportional to the nominal service capacity N

- Load balancing and auto-scaling operate within the same timescale



Some Examples

In France, 10% of the electricity produced is consumed

only to meet the needs of data centres
[source: https://corporate.ovhcloud.com]
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https://corporate.ovhcloud.com/en/newsroom/news/distiller-research-program/
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>  C(lassic algorithms: quick review, fundamental question

>> Recent approaches: replication vs speculation
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>>  Quick state of the art
> A new framework
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Standard Load Balancing

Classic algorithms: each incoming job is dispatched to a (unique) queue
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Size Interval Task Allocation, SITA

... and a lot more
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Power-of-d "with memory”: Low complexity and zero wait if A<1-1/d, excellent performance otherwise
[J. Anselmi, F. Dufour Power-of-d-Choices with Memory: Fluid Limit and Optimality, Mathematics of Operations Research, 2020]
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Standard Load Balancing
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Power-of-d "with memory”: Low complexity and zero wait if A<1-1/d, excellent performance otherwise
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RR+SITA: Low complexity and zero wait if job sizes are known

Huge Literature

Random

Round-Robin, RR
Join-the-shortest-queue, JSQ(N)
Power-of-d, JSQ(d)
Join-the-idle-queue

Least Left Workload

Size Interval Task Allocation, SITA

... and a lot more

[J. Anselmi Combining Size-Based Load Balancing with Round-Robin for Scalable Low Latency, IEEE Transactions on Parallel and Distributed Systems, 2019]



Standard Load Balancing

Classic algorithms: each incoming job is dispatched to a (unique) queue

Huge Literature
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Remark: All these load balancing algorithms are stable if and only if A<1. Can we do better?




Recent Approach: Replicate

[The Tail at Scale, Google Research]

Motivation: to mitigate the effect of stragglers

Two underlying principles

Either replicate (as in Google's BigTable):
1)  “replicate a job upon its arrival and use the results from whichever replica responds first”

or speculate (as in Apache Spark and Hadoop MapReduce):

2) “replicate ajob as soon as the system detects it as a straggler”



Recent Approach: Replicate

[The Tail at Scale, Google Research]

Motivation: to mitigate the effect of stragglers

Two underlying principles

Either replicate (as in Google's BigTable):
1)  “replicate a job upon its arrival and use the results from whichever replica responds first”

or speculate (as in Apache Spark and Hadoop MapReduce):

2) “replicate ajob as soon as the system detects it as a straggler”

Which approach provides the best results?




Speculative Load Balancing

job service time, E[7,]=E[5,]=1
‘ [—>job timeout

mln(771.T) Yes, job completed

P e
AN / . “’No, re-route
=—3p-| Dispatcher :

Theorem. The system is stable iff

p(1) := Emin(ny,7)] + P(n1 > 7)E[ns | m1 > 7] < 1

[J. Anselmi and N. Walton Stability and Optimization of Speculative Queueing Networks, IEEE Transactions on Networking (to appear)]



Speculative Load Balancing

job service time, E[7,]=E[5,]=1
‘ [—>job timeout

m|n(771;f) Yes, job completed
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=—3p-| Dispatcher :

Theorem. The system is stable iff

p(1) := Emin(ny,7)] + P(n1 > 7)E[ns | m1 > 7] < 1

[J. Anselmi and N. Walton Stability and Optimization of Speculative Queueing Networks, IEEE Transactions on Networking (to appear)]

Remark. The stability regions of speculative load balancing, p(z)<1, and standard

load balancing, A<1, are different!




Speculation vs Standard Load Balancing

Service times at server . n,=S. X — where S.="server slowdown"” and X="job intrinsic size”
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Bimodal: S =10 w.p. 0.99, S = 10% w.p. 0.01.



Speculation vs Replication

Replication strategies: Cancel-on-Complete-d (CoC-d) and Cancel-on-Start-d (CoS-d)
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= Speculation provides a larger stability region!
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Load Balancing and Auto-scaling
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Centralized Decentralized
AWS Lambda, Azure Functions, IBM
Synchronous Cloud Functions, Apache OpenWhisk Some theoretical work
= several research works [Borst et al. 2017, Clausen et al. 2021]
Asynchronous 5 Knative (GOOgle Cloud RUﬂ)
) = no theoretical work (AFAIK!)




Asynchronous Load Balancing and Auto-scaling
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induced by idle servers vanish as N—
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To investigate the dynamics of the serverless — :
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platform Knative to help the platform user to ! 551 OF O servers |
design and efficiently evaluate the performance ZIZIIZIIZIIZZ2 Auto-scaling
of different scaling rules. ! Pool of INIT servers ISERYEITS S

__________

DREO: Delay and Relative Energy Optimality
User-perceived delay and the relative energy wastage
induced by idle servers vanish as N—

Theorem (Optimal Design). DREO is guaranteed by using Join-the-Idle-Queue and a scale-up

rate that is zero if and only if A exceeds the overall rate at which servers become idle-on, i.e., idle
and active.

[J. Anselmi Asynchronous Load Balancing and Auto-scaling: Mean-field Limit and Optimal Design (submitted) https://arxiv.org/abs/2204.02352]
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