Load balancing and auto-scaling for large-scale
parallel-server systems

Jonatha ANSELMI, Inria, Polaris team
July 5, 2022

AJE/P/12
12éme Atelier d'Evaluation de Performances, 4-5 juillet 2022, Grenoble

Fundamental Problem

Decentralized control of large-scale parallel-server systems
Buffer 1 Server 1

| WD~
Demand: An JOD/SEC ey Control D—)

'| Qs

Buffer N Server N

Design objectives:

-> Minimization of congestion (eg, delays) and operational costs (eg, energy usage)
- Simple policies: low complexity, scalability

Load Balancing and Auto-scaling

AN
e

Load balancing:

Dispatch jobs to ON servers

Control

EIIICIj—)

Pool of OFF servers

1
I
I
1
1
I
I
1
1
J

A\

A%

Auto-scaling:
Scale up/down the net service capacity in
response to the current load

Challenge: Design algorithms that achieve low wait and energy consumption for large N
In math: Can we make latency go to zero with no waste of energy in the limit where N—« ?

Assumptions: - The mean demand AN is proportional to the nominal service capacity N

- Load balancing and auto-scaling operate within the same timescale

Some Examples

In France, 10% of the electricity produced is consumed

only to meet the needs of data centres
[source: https://corporate.ovhcloud.com]

Data centers

WEB APPLICATION
HOSTING

i
05
1
web services
T ons P .

B 13° R vaiabie Doman Name 5 B o e automatialy ¢ 3 §f;:§"i§?£"§£j?§

e S

i

Yraffc is routed 1o Infrastruc

oSyst_em sorvice NEnE
verview

application raffic among multple Ama:
Cloud (EC2) Instances across Availai
enables even greater fault folerance ppications.
‘seamiessly providing the amount of o ing capacity
Reeded in response to incoming application traffic.

auning
decreases automatcally during

Web servers and appiication servers are depiayed on To provide high avai relational database that
used by the D Amazon £C2 nstances. Most organizations will select B containe appication hosted redundantly on a
n Simple Storage ‘Amazon Machine Image (AMI) and then customize it to mult-AZ (multple Availa s—zones A and B here)
rage hirasinuciire their needs. This custom AMI will then become the starting deployment of Amazon Relational Database Service
fata storage point for future web development. (Amazon RDS).

https://corporate.ovhcloud.com/en/newsroom/news/distiller-research-program/

Outline

% Load balancing
> C(lassic algorithms: quick review, fundamental question

>> Recent approaches: replication vs speculation

% Auto-scaling
>> Quick state of the art
> A new framework

Outline

% Load balancing

> Classic algorithms: quick review, fundamental question
>> Recent approaches: replication vs speculation

K/

% Auto-scaling
>> Quick state of the art
> A new framework

Standard Load Balancing

Classic algorithms: each incoming job is dispatched to a (unique) queue

AN

1O

Dispatcher

Server 1

|Ogg

Server N

Huge Literature

Random

Round-Robin, RR
Join-the-shortest-queue, JSQ(N)
Power-of-d, JSQ(d)
Join-the-idle-queue

Least Left Workload

Size Interval Task Allocation, SITA

... and a lot more

Standard Load Balancing

Classic algorithms: each incoming job is dispatched to a (unique) queue

AN

IO

Server 1

Dispatcher

N Oss

Server N

JSQ: Zero wait but high complexity
Power-of-d: Non-zero wait but low complexity

Huge Literature

Random

Round-Robin, RR
Join-the-shortest-queue, JSQ(N)
Power-of-d, JSQ(d)
Join-the-idle-queue

Least Left Workload

Size Interval Task Allocation, SITA

... and a lot more

Standard Load Balancing

Classic algorithms: each incoming job is dispatched to a (unique) queue

AN

JSQ: Zero wait but high complexity

1O

Dispatcher

Server 1

|Ogg

Server N

Power-of-d: Non-zero wait but low complexity

Power-of-d "with memory”: Low complexity and zero wait if A<1-1/d, excellent performance otherwise
[J. Anselmi, F. Dufour Power-of-d-Choices with Memory: Fluid Limit and Optimality, Mathematics of Operations Research, 2020]

Huge Literature

Random

Round-Robin, RR
Join-the-shortest-queue, JSQ(N)
Power-of-d, JSQ(d)
Join-the-idle-queue

Least Left Workload

Size Interval Task Allocation, SITA

... and a lot more

Standard Load Balancing

Classic algorithms: each incoming job is dispatched to a (unique) queue

AN

JSQ: Zero wait but high complexity

1O

Dispatcher

Server 1

|Ogg

Server N

Power-of-d: Non-zero wait but low complexity

Power-of-d "with memory”: Low complexity and zero wait if A<1-1/d, excellent performance otherwise
[J. Anselmi, F. Dufour Power-of-d-Choices with Memory: Fluid Limit and Optimality, Mathematics of Operations Research, 2020]

RR+SITA: Low complexity and zero wait if job sizes are known

Huge Literature

Random

Round-Robin, RR
Join-the-shortest-queue, JSQ(N)
Power-of-d, JSQ(d)
Join-the-idle-queue

Least Left Workload

Size Interval Task Allocation, SITA

... and a lot more

[J. Anselmi Combining Size-Based Load Balancing with Round-Robin for Scalable Low Latency, IEEE Transactions on Parallel and Distributed Systems, 2019]

Standard Load Balancing

Classic algorithms: each incoming job is dispatched to a (unique) queue

Huge Literature
I I .@_> Random

5 . Server 1 Round-Robin, RR
N) _ Join-the-shortest-queue, JSQ(N)
—>| Dispatcher Power-of-d, JSQ(d)

Join-the-idle-queue
Least Left Workload
I I@—) Size Interval Task Allocation, SITA

Server N ... and a lot more

Remark: All these load balancing algorithms are stable if and only if A<1. Can we do better?

Recent Approach: Replicate

[The Tail at Scale, Google Research]

Motivation: to mitigate the effect of stragglers

Two underlying principles

Either replicate (as in Google's BigTable):
1) “replicate a job upon its arrival and use the results from whichever replica responds first”

or speculate (as in Apache Spark and Hadoop MapReduce):

2) “replicate ajob as soon as the system detects it as a straggler”

Recent Approach: Replicate

[The Tail at Scale, Google Research]

Motivation: to mitigate the effect of stragglers

Two underlying principles

Either replicate (as in Google's BigTable):
1) “replicate a job upon its arrival and use the results from whichever replica responds first”

or speculate (as in Apache Spark and Hadoop MapReduce):

2) “replicate ajob as soon as the system detects it as a straggler”

Which approach provides the best results?

Speculative Load Balancing

job service time, E[7,]=E[5,]=1
‘ [—>job timeout

mln(771.T) Yes, job completed

P e
AN / . “’No, re-route
=—3p-| Dispatcher :

Theorem. The system is stable iff

p(1) := Emin(ny,7)] + P(n1 > 7)E[ns | m1 > 7] < 1

[J. Anselmi and N. Walton Stability and Optimization of Speculative Queueing Networks, IEEE Transactions on Networking (to appear)]

Speculative Load Balancing

job service time, E[7,]=E[5,]=1
‘ [—>job timeout

m|n(771;f) Yes, job completed

O—) n<t1?—>
AN / . “’No, re-route
=—3p-| Dispatcher :

Theorem. The system is stable iff

p(1) := Emin(ny,7)] + P(n1 > 7)E[ns | m1 > 7] < 1

[J. Anselmi and N. Walton Stability and Optimization of Speculative Queueing Networks, IEEE Transactions on Networking (to appear)]

Remark. The stability regions of speculative load balancing, p(z)<1, and standard

load balancing, A<1, are different!

Speculation vs Standard Load Balancing

Service times at server . n,=S. X — where S.="server slowdown"” and X="job intrinsic size”

p(7) [X E[SX]

2

L. 8
1.6
1.4 |-
1.2

-GS ~Bimodal, X=1

— S ~Pareto(a=1.1), X=1
= = =S~Pareto(a=2.0), X=1
——S~HyperExp2, X=1

——S~Bimodal, X~Uniform([0,2]) | |
——S~Bimodal, X~Exponential(1) ||

A —

0.8 -
0.6
0.4 -
0.2

1071

Timeout 7

Bimodal: S =10 w.p. 0.99, S = 10% w.p. 0.01.

Speculation vs Replication

Replication strategies: Cancel-on-Complete-d (CoC-d) and Cancel-on-Start-d (CoS-d)
S~Bimodal, X=1 S~Bimodal, X~Uniform

S~Bimodal, X~Exponential
103 [1 '\' I T T T LI T T T

. r i ! T
——SLB r =10| | @' ! —*—SLB r =20/ | | { ——SLB7=73| | i :
—%—CoC-2 i . —%—CoC-2 i ' 103 | |[—=—CoC-2 “ | 1

w ~+-CoC-4 |[1| | -#-CoC-4 i : -#-CoC-4 boi :

£ —%—CoS-2 i ! : —~—Cos2 || : —%—C0S-2 b :

(= -%-CoS-4 i | -#-C0S-4 i , -%-CoS-4 i .

Q i : 1 /‘ 1 |

g ol It 4 : |

1]]

o | | . |

/ g ' : |

() /* A i

o /) !] :

o H : | |

S / ol ' ' ' '

A | : |

| | :
]]]
e F | L L L 1 3 =% 1 . . . i N = L . L L
0.1 0.3 0.5 0.7 0.911.1 1.3 1.5 1.7 1.95 0.1 0.3 0.5 0.7 0.911.1 1.3 1.5 1.71.92 0.1 0.3 0.5 0.7 0.911.1 1.3 1.5 1.82
A Eln,] A Eln, | A Eln, |

= Speculation provides a larger stability region!

Outline

% Load balancing
> C(lassic algorithms: quick review, fundamental question

>> Recent approaches: replication vs speculation

<% Auto-scaling
>> Quick state of the art
> A new framework

Load Balancing and Auto-scaling

I
Load balancing G} I AN Load balancing
AN I : I
I
— C} | — 4
I

I
j Pool of ON servers

:

I
j Pool of ON servers

Auto-scaling Auto-scaling

l_ ________ | l_ ________ |
I Pool of INIT servers I Pool of INIT servers

L __ J L __ J
[_ ________ | [_ ________ |

I Pool of OFF servers : I Pool of OFF servers :
1 N servers max 1 N servers max

_________ < ——— o = o= o= o= o

Centralized Decentralized
AWS Lambda, Azure Functions, IBM
Synchronous Cloud Functions, Apache OpenWhisk Some theoretical work
= several research works [Borst et al. 2017, Clausen et al. 2021]
Asynchronous 5 Knative (GOOgle Cloud RUﬂ)
) = no theoretical work (AFAIK!)

Asynchronous Load Balancing and Auto-scaling

Challenge ., Load balancing_ I TMKID> |

q c 0 N 1

To investigate the dynamics of the serverless — :

. — (> |

platform Knative to help the platform user to ! 551 OF O servers |
design and efficiently evaluate the performance ZIZIIZIIZIIZZ2 Auto-scaling
of different scaling rules. ! Pool of INIT servers ISERYEITS S

DREO: Delay and Relative Energy Optimality
User-perceived delay and the relative energy wastage
induced by idle servers vanish as N—

Asynchronous Load Balancing and Auto-scaling

Challenge

:

AN Load balancing 1 :

To investigate the dynamics of the serverless — :

. —> (>

platform Knative to help the platform user to ! 551 OF O servers |
design and efficiently evaluate the performance ZIZIIZIIZIIZZ2 Auto-scaling
of different scaling rules. ! Pool of INIT servers ISERYEITS S

DREO: Delay and Relative Energy Optimality
User-perceived delay and the relative energy wastage
induced by idle servers vanish as N—

Theorem (Optimal Design). DREO is guaranteed by using Join-the-Idle-Queue and a scale-up

rate that is zero if and only if A exceeds the overall rate at which servers become idle-on, i.e., idle
and active.

[J. Anselmi Asynchronous Load Balancing and Auto-scaling: Mean-field Limit and Optimal Design (submitted) https://arxiv.org/abs/2204.02352]

https://arxiv.org/abs/2204.02352

