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Quantum	network

Objective:	provide	entangled
states	to	sets	of	usersQuantum switch
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Quantum	network

A,	B,	C	share entangled qubits
A

B

C



n qubit is	a	two-state/level	mechanical	system
n spin	of	an	electron	(up,	down)

n polarization	of	a	photon	(horizontal,	vertical)
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Very	short	primer	on	entanglement



n classical	bit	is	either	0	or	1
n qubit	is	in	superposition	of	two	basic	states

and						are	complex	numbers
=	prob.	of	finding	qubit	in	state	0

=	prob.	of	finding	qubit	in	state	1
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Quantum	bit



After measurement quantum state collapses to either state 0 or 
state 1.

Measurement collapse
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Two	qubits (or	more)	can	be	in	shared	state,	in	which	operations	
on	one	affect	the	other(s).	Qubits are	said	to	be	entangled.

Example:	one	of	four	Bell	pairs	is

If	one	qubit is	measured	in	state	i=0,1	(prob.	½)	other	qubit is	also	
measured	in	state	i.
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|0iA ⌦ |0iB + |1iA ⌦ |1iBp
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Quantum	entanglement



Entanglement	generation

Many	methods	exist,	some	experimentally	demonstrated.
n parametric	down	conversion	(PDC)

n radioactive	substance	emitting	electrons	upon	decay
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Entanglement	generation
Sharing	entangled	state	between	users	forms	basis	of	much	of	
quantum	communication/computing.

Applications	include
n quantum	cryptography (Quantum	Key	Distribution	or	QKD)
n distributed quantum	computing
n quantum	sensing
n quantum	machine	learning.

Networks	must	be	able	to	create	them	efficiently.
9



§ Alice asks third party (C) to generate pairs of entangled photons
(Bell pairs): one photon goes to Alice, other photon goes to Bob.
§ When Alice and Bob measure in |0>, |1> basis they find same value i.e.
0 with prob. ½, 1 with prob. ½. 
§ Repeating this operation n times generates shared key with n bits.

E91	protocol	for	secret	key	generation
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Key feature: Eavesdropper can be detected (Alice and Bob measure in two
different basis, |0>, |1>  and |+>, |->). 

Artur K. Ekert « Quantum cryptography based on Bell’s theorem »
Physical Review Letters 67 (6), pp. 661-663, 1991.

E91	protocol	for	secret	key	generation
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Secure	communications

QKD	enables	secure	communications.
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Problem

Difficult	to	transmit	quantum	state	across	long	distance,	both	on	
optical	fiber	and	through	free	space.

Need	for	quantum	switching network	supplying end-to-end	
entanglement to	groups	of	endpoints that request them.	
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In	classical	network	one	can	use	repeaters.
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Need	for	quantum	network
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link-level entanglements$OLFH %RE

Smallest	quantum	network:	Quantum	switch

qubits A1 and A2 (resp. B1 and B2) are entangled

Short story: this can be done!

A1 A2
B2

B1

quantum switch

Goal: Entangle A1 and B1



16

link-level entanglements$OLFH %RE

qubits A1 and A2 (resp. B1 and B2) are entangled

Longer story: How?… given quantum state can neither be regenerated nor copied.

No-cloning theorem: It is physically impossible to create copy of arbitrary unknown 
quantum state. 

A1 A2
B2

B1

quantum switch

Goal: Entangle A1 and B1

Smallest	quantum	network:	Quantum	switch



Solution

Teleportation
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C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres,  and W. K. Wootters, 
« Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-
Rosen Channels » Physical Review Letters, vol. 70, pp. 1895-1899, 1993.

Smallest	quantum	network:	Quantum	switch
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$OLFH %RE

B2A2
A1 B1

§ quantum opns on qubits A2 and B2  (c-not and Hadamard gates) followed
by measurement (whose result is (0,0) or (0,1) or (1,0) or (1,1))

§ measurement result sent to Bob via classical medium (no faster than light!)  
§ with this information Bob performs quantum opns on B1, which then inherits

quantum state of A2
à qubits A1 and B1 are entangled (entanglement swapping)

§ entanglement swapping may fail
§ both qubits A2 and B2 collapse. 

teleportation

Smallest	quantum	network:	Quantum	switch
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$OLFH %RE

$OLFH %RE

link-level entanglements

end-to-end entanglement

$OLFH %RE

entanglement swapping

Smallest	quantum	network:	Quantum	switch
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Switch	equipped	
with	quantum	
memories	(buffers)

B	quantum	memories	
allocated	to	each	link

Here	B=1

unoccupied	
quantum	
memory

occupied	
quantum	
memory

Smallest	quantum	network:	Quantum	switch
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B=2

Smallest	quantum	network:	Quantum	switch
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Performance	of	single	quantum	switch

Performance	metrics	
of	interest:

n stability	when	B	is	infinite
n capacity	(end-to-end	entanglement	rate)
n nb. available	entanglements	(Bell	pairs).
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n-partite	entanglement	

Case of n-partite entanglement (2 ≤ n ≤ k):
as soon as n links non-empty, swap takes place

Infinite memory storage at links
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Analysis	for	B	=∞	(infinite	memory	at	links)
n k	users,	k	identical	links
n At	any	time,	any	combination	of	n	users	(2≤n≤	k)	
wishes	to	share	entangled	qubits
As	soon	as	n	distinct	link-level	entanglements	available,			

attempt to	create	n-partite	entanglement
Succeeds	with	prob.	q	
n Link-level	entanglement	generation	
is	Poisson,	rate	μ

n Independence	assumptions.
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Analysis	for	B	=∞	
Property: at	most	n-1	links	can	be	non-empty.

Identical	links	allow	us	to	construct	n-th dimensional	
continuous-time	Markovian representation	

x=(x1,…,	xn-1)						Rj ,					j=0,1,..,n-1,
indicating	nb. available	entangled	pairs	per	link,	with
u x						Rj if	it	has	exactly	j	zero entries	((0,…,0)						Rn-1).∈

∈

∈
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Analysis	for	B	=∞	
Uniformizing this	Markov	process	(Poisson	process	with	rate	μk)	
yields	DTMC	X :=	{(X1(t),	…, Xn-1(t)),	t=1,2..}	with	non-zero	transitions	

Reminder: x       Rj if it has exactly j zero entries.∈
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Results	for	B	=∞	[Sigmetrics 2020]
k	=	nb. users
any	combination	of	n	users	wishes	to	share	entangled	qubits,	2	≤n≤	k
μ	=	link-level	entanglement	rate
q	=	prob.	successful	swapping

n System	stable	iff.	n<k		(à unstable	when	n=k)
n System	capacity	is	qμk/n							
n E[total	#	of	available	Bell	pairs]	=	k(n-1)	/	2(k-n)
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Results	for	B	=∞	[Sig.	2020]	
n System	stable	iff.	n<k:	Proof	of	“if	part”	uses	Foster	
criterion.

Problem: X has	infinitely	many	boundary	states
whose	drift	is	positive	regardless	of	choice	of	
Lyapounov function.

Solution: Apply	Foster	criterion	to	MC	embedded	
in	X at	times	when	all	entries	of	X are	non-zero.

n=3
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Results	for	B	=∞	[Sig.	2020]

n System	capacity	is	qμk/n
If	system	stable	

E[V(X(t+1))- V(X(t))]	=	0		for	E[V(X(1))]<∞
with	X(t)	:=	(X1(t),	...,	Xn-1(t)).
Choosing	V(x)	=	x1 +…	+	xn-1		yields	result.

Intuition:	μk =	total	link-level	entanglement	rate
è Successful	n-partite	swapping	has	rate	qμk/n.	
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Results	for	B	=∞	[Sig.	2020]	

n E[total	nb. available	Bell	pairs]	=	k(n-1)	/	2(k-n)	

This	time	choosing	
V(x)	=	min(T,																			)	and	V(x)	=	min(T2,																							)
and	letting	Tà∞ yields	result.

Technique	does	not	apply	for	variance	(yields	open	syst.	of	
eqns).	For	n=3	variance	obtained	in	[Questa,	2022].

x1
2 +...+ xn−1

2 (x1 +...+ xn−1)
2
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Bipartite	entanglement	(n=2)

Case of bipartite entanglement (n=2):
as soon as two links non-empty, swap takes place

Arbitrary memory storage at links
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Bipartite	entanglement	(n=2),	heterogeneous	links,	decoherence

n = 2,   k > 2,  B arbitrary

µl  = entanglement rate link l,  γ = µl
l=1

k

∑

α  = decoherence rate
                

decoherence: in state jek  replace γ -µk  by γ -µk − jα

ej = (0,.., 0,1, 0,..., 0)
no decoherence

jth entry
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Bipartite	entangl.	(n=2),	heterogeneous	links,	decoherence
n = 2,   k > 2,  B arbitrary

µl  = entanglement rate link l,   γ = µl
l=1

k

∑

α  = decoherence rate
Q = # available Bell pairs
                

(with  ρl := µl /(γ -µl )   ∀l)X(t) = (X1(t),...,Xk (t)) system state time t
Xl (t)∈ {0,1,...,B} # stored qubits link l
{X(t), t ≥ 0} Markov chain on {0,1,...,B}k  
π 0 = lim

t→∞
 P(X(t)=(0,...,0))

π l
( j ) = lim

t→∞
 P(X(t)=jel ),   j=1,...,B, l=1,...,k

with
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Bipartite	entanglement	(n=2)	[IEEE	TQE	2021]

n = 2,   k > 2,  B (buffer size) arbitrary, µl  = entanglement rate link l,   γ = µl
l=1

k

∑

α  = decoherence rate, Q = # available Bell pairs
                

Stability when B=∞:
• always stable when α > 0
• stable when max1≤l≤k μl < γ/2 when α = 0. 
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Bipartite	entanglement	(n=2)	[IEEE	TQE	2021]

n = 2,   k > 2,  B (buffer size) arbitrary
Identical links (µ  = µl,  l =1,...,k,  qµ= 1) 
No decoherence (α  = 0). 
                

§ Homogeneous system
behaves as B=∞ for B≥5 
(for all k>2 for C, as long as 

k≥5 for E[Q]).
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B=1
B=2
B=5
B=10
B=100
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q k=5	(5	links)

q Entanglement	
generation	rates	(35,	15,	
15,	3,	3),	avg.	14.2	
Mbits/sec.

n Homogeneous	system	
achieves	better	capacity	
for	all	values	of	buffer	
size	(B).

Heterogeneous

Bipartite	entanglement	(n=2)	[IEEE	TQE	2021]



Ongoing	work	(with	W.	Dai	,	MIT,	&	D.	Towsley,	UMass)
Entanglement requests randomly arrive	at users.		
Ai,j(t)	=	entanglement requests in	slot	t

between users i	and	j

Design	protocols that schedule
entanglement swapping operations
in	quantum	switches.	

Goal	is to	stabilize quantum	switch	so that number of	unfinished
entanglement requests bounded with high	probability.
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Research	directions
Analysis	of	network of	quantum	switches.

One	specificity:	shortest-path	may	not	be	available.
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Research	directions
Alice	and	Bob's qubits
are	entangled via	a	path
that is not	the	shortest one.
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Missing 
‘quantum link’



Thank	you!
Q&A.
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