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Objective of Network Calculus
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• classes of flows with hard delay
constraints

• classes of flows with not so hard delay
constraints

Objective: deterministic performance guarantees

Compute the maximum time it takes for a packet to cross the system (Worst-case
delay)
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ES: end system

• classes of flows with hard delay
constraints

• classes of flows with not so hard delay
constraints

Objective: stochastic performance guarantees

Compute the time it takes for 99.99% of the packets to cross the system.
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Network calculus

• Theory introduced in the 1990’s by R.L. Cruz and Alain Jean-Marie then
developed and popularized by C.S. Chang and J.-Y. Le Boudec.

• Filtering theory in the (min,plus) algebra.

• Applications:
▶ Internet: video transmission (VoD),
▶ Load-balancing in switches [Birkhoff-von Neumann switches, C.S. Chang]
▶ Embedded systems: AFDX (Avionics Full Duplex) [Rockwell-Collins software used to

certify A380], Networks-on-chip

• Recent trend to using this in 5G network that have strong latency and reliability
requirements.

• Extentions / variations:
▶ Real-Time Calculus [L. Thiele, S. Chakraborty]
▶ Extended to Stochastic network calculus [C.S. Chang, Y.M. Jiang, F. Ciucu, J.

Schmitt, M. Fidler]
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Server model

C
A D

Arrival process

A(s, t) amount of arrivals between
time s and t: if ai is the amount of
data arriving during time slot i ,
i ≥ 1,

A(s, t) =
t−1∑
i=s

ai .

Service process

C (s, t) amount of service offered
between time s and t: if ci is the
amount of data arriving during time
slot i , i ≥ 1,

C (s, t) =
t−1∑
i=s

ci .
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Server model

C
A D

Arrival process

A(s, t) =
t−1∑
i=s

ai .

Service process

C (s, t) =
t−1∑
i=s

ci .

Queue length (or backlog):

q(t) = max(q(t − 1) + at−1 − ct−1, 0) = · · · = max0≤s≤t A(s, t)− C (s, t)

Input/Output relation:

D(0, t) = A(0, t)− q(t) ≥ inf0≤s≤t A(0, s) + C (s, t).
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Performance bounds

Backlog q(t)

q(t) > B ⇔ A(0, t)− D(0, t) > B ⇔ inf
s≤t

A(s, t)− C (s, t) > B.

Delay d(t)

d(t) > T ⇔ A(0, t) > D(0, t + T ) ⇔ inf
s≤t

A(s, t)− C (s, t + T ) > 0.

Characterization of the departure process D(s, t)

D(s, t) = sup
u≤s

A(u, t)− C (s, t)
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Different models of Stochastic Network Calculus (SNC)

1. Tailbound-SNC:

P(A(t)− A(s) > r(t − s) + b) ≤ ϵ(b, t − s).

▶ Introduced in [Yaron and Sidi, 93], and focus of the book [Jiang 08]
▶ (min,plus) computations can be adapted with smart use of the Boole inequality.
▶ loosy error bounds

2. Moment-Generating Function-SNC:

E[eθA(s,t)] ≤ eθ(σA(θ)+ρA(θ)(t−s)).

▶ Introduced in [Chang, 00], and focus of [Rizk and Fidler, 12]
▶ Martingale and Doob’s inequality approach [Ciucu, 15]
▶ Not independent processes, network analysis more complex (Hölder’s inequality)

[Beck, 16; Nikolaus, Schmitt, 17]
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Comparison of the models
Model Tailbound MGF Martingale

Quality of the bound Very poor A little better Quasi-tight
Topologies Feed-forward Feed-forward 1 server

Scheduling policies All from DNC Blind FIFO, SP, EDF
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Moment generating functions and (σ(θ), ρ(θ))-constraints

Arrival (σA(θ), ρA(θ))-constraint

∀s ≤ t, E[eθA(s,t)] ≤ eθ(σA(θ)+ρA(θ)(t−s)).

Service (σC (θ), ρC (θ))-constraint

∀s ≤ t, E[e−θC(s,t)] ≤ eθ(σC (θ)−ρC (θ)(t−s)).
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Examples of arrival processes

I.i.d. processes

• E[eθA(s,t)] = E[eθa1 ]t−s

• σ(θ) = 0 and ρ(θ) = lnE[eθa1 ]
θ

On-Off modulated Markov processes (MMOO)

• {X (t)} a two-state Markov-Chain (ON and OFF states), P =

(
1− p p
q 1− q

)
• dON a distribution

• at =

{
0 if X (t) = OFF
∼ dON if X (t) = ON

• ρ(θ) and σ(θ) are computed using the spectral analysis of
(

1 − p p

qE[eθdON ] (1 − q)E[eθdON ]

)

More generally, the Markov-modulated processes can be analyzed
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Computing the violation probability of a backlog bound

P(q(t) > B) = P( max
0≤s≤t

A(s, t)− C (s, t) > B)

= P(∪0≤s≤t{A(s, t)− C (s, t) > B})

Some probabilistic inequalities

1. Boole inequality (aka union bound): P(∪i≥0Ei ) ≤
∑

i≥0 P(Ei )

2. Chernoff Bound: P(X ≥ a) ≤ infθ>0 E[eθX ]e−θa

The combination of the two inequalities is powerful for the probabilistic method (prove
the existence of combinatorial objects with probabilistic tools): proving that some
probabilities tend to 0 with the size of the object is enough.

For performance evaluation, the goal is to find a good approximation of probabilities,
and these two inequalities are not enough.
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Moment-generating-function SNC (MGF-SNC)

[Fidler 2006, Schmitt et al. 2010–]
If the arrivals and services are independent:

P(q(t) > B) ≤ P(∪s≤t{A(s, t)− C (s, t) > B})

Union Bound ≤
∑
s≤t

P({A(s, t)− C (s, t) > B})

Chernoff + Independence ≤
∑
s≤t

E[eθA(s,t)]E[e−θC(s,t)]e−θB

• The larger θ, the larger the decay rate

• The value of θ is constrained by ρA(θ)− ρC (θ) < 0
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Previous MGF-SNC approach
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2 , F
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2 are not independent

3. Use the Hölder inequality instead. Increase the inaccuracy of the bounds

Improvement tricks:

• Flow prolongation

• Lyapunov inequality
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Pay multiplexing only once

Idea: Directly compute the left-over service curve for flow 1 on its path.
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Pay multiplexing only once
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Pay multiplexing only once
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Theorem
The end-to-end service for flow 1 is

Ce2e(t1, t4) = ( inf
t1≤t2≤t3≤t4

A1(0, t1)+C1(t1, t2)+C2(t2, t3)+C3(t3, t4)−A2(t1, t3)−A3(t2, t4))+.

(x)+ = max(0, x)

E[e−θCe2e(u,t)] cannot be expressed with a (σ(θ), ρ(θ))-constraint.
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Bounding Generating function for the end-to-end service

Use generating functions to generalize the (σ(θ), ρ(θ))-constraints

∀s ≤ t, E[e−θC(s,t)] ≤ e−θσC (θ)+(t−s)ρC (θ) ⇝ FC (θ, z) =
eθσ(θ)

1− ze−θρC (θ)

Delay, backlog violation probabilities and departure processes can be expressed using
generating functions

Service bounding generating function for the end-to-end service

FCe2e (θ, z) =
eθ(σS1

+σA2
)

1− e−θ(ρC1−ρA2 )z

eθ(σS2
+σA3

)

1− e−θ(ρC2−ρA2−ρA3 )z

eθσS3

1− e−θ(ρC3−ρA3 )z
.
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Computing the performance bound bounds

1. Use FCe2e (θ, z) for computing the delay or backlog bound

2. For the delay, the formula can be simplified if FCe2e has multiple singularities
(basic but tedious computations) to a single singularity

3. optimization of θ:
▶ For each server j , there exists a maximum value of θj such that e−θ(ρCj

−ρ
A(j)

) ≤ 1
▶ One need to choose θ such that θ < minj θj , minimizing the performance bound

4. Only one parameter to optimize!

17 / 26 Huawei Public use



Numerical evaluation

PMOO-AC
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1. The new bound catches the decay rate of the violation probability

2. Easier and faster to compute than the standard ones

3. Still not very satisfactory (the gap with simulation is still too large)
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Martingale SNC
[Chang 2000, Ciucu 2014, Duffield 1994, Kingman 1963]

There exists a vector v such that

M(θ, s, t) = v(Xs)e
θ(A(s,t)−C(s,t)−(ρA(θ)−ρC (θ))(t−s))

is a backward martingale: E[M(θ, s − 1, t) | Fu≥s ] = M(θ, s, t)

From Doob’s inequality for super-martingales, there exists a relatively small constant
φ(θ) (depending on v) such that

P(q(t) > B) ≤ P(sup
s≤t

eθ(A(s,t)−C(s,t)) > eθB)

≤ φ(θ)e−θB .

This formula is valid for all θ such that ρA(θ) ≤ ρC (θ).
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A martingale for the arrivals and service processes

To avoid technicalities/heavy notations, we focus on the i.i.d. cases (but no difficulty for MMPs)

Let A(s, t) be an arrival process, A(s, t) =
∑t−1

i=s ai , where (ai ) is i.i.d. Let
eθρA(θ) = E[eθa1 ] the MGF of a1.

Martingale associated to A

MA(θ, s, t) = eθA(s,t)e−θρA(θ)(t−s)

Backward martingale: E[MA(θ, s − 1, t) | Fu≥s ] = MA(θ, s, t).
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Let C (s, t) be a service process, C (s, t) =
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Product of independent martingales

C1 C2
A

PMOO formula for the backlog:

sup
t1≤t2≤t3

A(t1, t3)− C1(t1, t2)− C2(t2, t3)

{q(t3) > B} ≤ {∃t1 ≤ t2 ≤ t3, A(t1, t3)− C1(t1, t2)− C2(t2, t3) > B}

• A martingale cannot be defined directly for A(t1, t3)− C1(t1, t2)− C2(t2, t3)

• if t2 is fixed, (MA(θ, t1, t3)MC1(θ, t1, t2))t1≤t2 is a backward martingale
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Backlog bound

C1 C2
A

Martingale-SNC

P(q(t3) > B) ≤
∑
t2≤t3

P( sup
t1≤t2

A(t1, t3)− C1(t1, t2)− C2(t2, t3) > B)

≤ e−θB

1− e−θ(ρC2−ρA)
.

MGF-SNC

P(q(t3) > B) ≤
∑

t1≤t2≤t3

P(A(t1, t3)− C1(t1, t2)− C2(t2, t3) > B)

≤ e−θB

(1− e−θ(ρC2−ρA))(1− e−θ(ρC1−ρA))
.
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General framework the mixed martingale/MGF SNC

For any tandem network:

• Write the PMOO service

• Use the Doob’s inequality can be applied locally at one server
▶ at the first server is always possible
▶ under some additional hypothesis (e.g. for sink trees with deterministic service) at

any server
▶ the best choice is to choose the server that minimizes sup{θ | ρCj (θ) ≥

∑
i∈j ρAi (θ)}

• Use the union bound at other places
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Numerical evaluation

Two servers in tandem

C1 C2

Interleaved (bottlenck is server 2)

C1 C2 C3
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Conclusion

Summary

• A new PMOO formula to improve the MGF-SNC:
▶ More accurate bounds (catch the decay rate of the violations probabilities)
▶ Faster to compute (no Hölder inequality, only one parameter to optimize)

• A first step to generalize the use of martingales in the multiple server case
▶ Application on the first server
▶ In some cases, possible to apply it to another server (e.g. in sink-tree tandems with

constant-rate servers

Future work

• Generalize the PMOO to other service policies (for example to FIFO networks)

• Generalize to more processes (Auto-regressive)

• General application of the martingale bound to another server? to several servers?

▶ New probabilistic tools needed...
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