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Objective of Network Calculus

e classes of flows with hard delay
constraints

ES: end system

Objective: deterministic performance guarantees

Compute the maximum time it takes for a packet to cross the system (Worst-case
delay)
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Objective of Network Calculus

e classes of flows with hard delay
constraints

e classes of flows with not so hard delay
constraints

ES: end system

Objective: stochastic performance guarantees
Compute the time it takes for 99.99% of the packets to cross the system.

2 HUAWEI

2/26 Huawei Public use



Network calculus

e Theory introduced in the 1990's by R.L. Cruz and Alain Jean-Marie then
developed and popularized by C.S. Chang and J.-Y. Le Boudec.

e Filtering theory in the (min,plus) algebra.
e Applications:

» Internet: video transmission (VoD),

» Load-balancing in switches [Birkhoff-von Neumann switches, C.S. Chang]

» Embedded systems: AFDX (Avionics Full Duplex) [Rockwell-Collins software used to
certify A380], Networks-on-chip

e Recent trend to using this in 5G network that have strong latency and reliability
requirements.
e Extentions / variations:

» Real-Time Calculus [L. Thiele, S. Chakraborty]
» Extended to Stochastic network calculus [C.S. Chang, Y.M. Jiang, F. Ciucu, J.
Schmitt, M. Fidler]

3/26 Huawei Public use s'é H UAWEI



Network calculus

e Theory introduced in the 1990's by R.L. Cruz and Alain Jean-Marie then
developed and popularized by C.S. Chang and J.-Y. Le Boudec.

e Filtering theory in the (min,plus) algebra.
e Applications:

» Internet: video transmission (VoD),

» Load-balancing in switches [Birkhoff-von Neumann switches, C.S. Chang]

» Embedded systems: AFDX (Avionics Full Duplex) [Rockwell-Collins software used to
certify A380], Networks-on-chip

e Recent trend to using this in 5G network that have strong latency and reliability
requirements.
e Extentions / variations:

» Real-Time Calculus [L. Thiele, S. Chakraborty]
» Extended to Stochastic network calculus [C.S. Chang, Y.M. Jiang, F. Ciucu, J.
Schmitt, M. Fidler]

3/26 Huawei Public use s'é H UAWEI



Contents

Stochastic Network Calculus
Arrival processes, servers and performance bounds
Three methods to compute performance bounds

A Pay-Multiplexing-Only-Once result for MGF-SNC
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Server model

Arrival process

A(s, t) amount of arrivals between
time s and t: if a; is the amount of

data arriving during time slot /,

i>1,

5/26

t—1
A(s, t) = Z aj.
i=s
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Service process

C(s, t) amount of service offered
between time s and t: if ¢; is the
amount of data arriving during time
slot i, i > 1,

t—1
C(s,t) = Z Gi.
i=s
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Server model

L~ |
Arrival process Service process
A(s, t) amount of arrivals between C(s, t) amount of service offered
time s and t: if a; is the amount of between time s and t: if ¢; is the
data arriving during time slot /, amount of data arriving during time
i>1, slot i, 1 >1,

t—1 t—1
A(s, t) = Z aj. C(s,t)= Z Gi.
i=s i=s

Queue length (or backlog):
q(t)
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Server model

L~ |
Arrival process Service process
A(s, t) amount of arrivals between C(s, t) amount of service offered
time s and t: if a; is the amount of between time s and t: if ¢; is the
data arriving during time slot /, amount of data arriving during time
i>1, slot i, 1 >1,

t—1 t—1
A(s, t) = Z aj. C(s,t)= Z Gi.
i=s i=s

Queue length (or backlog):
q(t) = max(q(t — 1) + ar1 — ¢+-1,0)
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Server model

L~ |
Arrival process Service process
A(s, t) amount of arrivals between C(s, t) amount of service offered
time s and t: if a; is the amount of between time s and t: if ¢; is the
data arriving during time slot /, amount of data arriving during time
i>1, slot i, 1 >1,

t—1 t—1
A(s, t) = Z aj. C(s,t)= Z Gi.
i=s i=s

Queue length (or backlog):
q(t) = max(q(t —1) +ar-1 —¢t-1,0) = - - = maxo<s<t A(s, t) — C(s, t)
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Server model

Arrival process Service process

t—1 t—1
A(s, t) = Z aj. C(s,t) = Z G

Queue length (or backlog):
q(t) = max(q(t — 1) + ac-1 — ct-1,0) = -+ = maxo<s<t A(s, t) — C(s, t)

Input/Output relation:
D(0,t) = A(0,t) — q(t) > info<s<+ A(0, s) + C(s, t).
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Performance bounds

Backlog q(t)

q(t) > B« A(0,t) — D(0,t) > B« i'lftA(s’ t) — C(s,t) > B.
s<

Delay d(t)

d(t)> T < A(0,t) > D(0,t+ T) ithA(s, t)— C(s,t+T)>0.
s<

Characterization of the departure process D(s, t)

D(s,t) =supA(u,t) — C(s, t)

u<s

2 HUAWEI
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Different models of Stochastic Network Calculus (SNC)
1. Tailbound-SNC:
P(A(t) — A(s) > r(t —s) + b) < ¢(b, t — s).

» Introduced in [Yaron and Sidi, 93], and focus of the book [Jiang 08|
» (min,plus) computations can be adapted with smart use of the Boole inequality.
» loosy error bounds

2. Moment-Generating Function-SNC:

E[e?A5)] < e oald)toa0)(t=5)

» Introduced in [Chang, 00], and focus of [Rizk and Fidler, 12]
» Martingale and Doob’s inequality approach [Ciucu, 15]
> Not independent processes, network analysis more complex (Holder's inequality)
[Beck, 16; Nikolaus, Schmitt, 17]
2 HUAWEI
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Comparison of the models

8 /26

Model Tailbound MGF Martingale
Quality of the bound Very poor A little better Quasi-tight
Topologies Feed-forward | Feed-forward 1 server
Scheduling policies || All from DNC Blind FIFO, SP, EDF
¥ k)
5 3
s s
5 S
= &
° 2
= >

delay
one server

Huawei Public use

delay

several servers
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Moment generating functions and (o(#). p(#))-constraints

Arrival (oa(0), pa(f))-constraint
Vs < t, E[eé’A(S,t)] < e@(UA(9)+pA(9)(t,5))'

Service (o¢(f), pc(#))-constraint
Vs < t, E[e—OC(S,t)] < 69(05(9)_pc(9)(t_5))'

V2 HUAWEI
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Examples of arrival processes

l.i.d. processes
° E[eQA(s,t)] — E[eﬁal]t—s
o o(0) = 0 and p(f) = "El"]
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Examples of arrival processes

l.i.d. processes
° E[eQA(s,t)] — E[eﬁal]t—s
o o(0) = 0 and p(f) = "El"]

On-Off modulated Markov processes (MMOO)

e {X(t)} a two-state Markov-Chain (ON and OFF states), P = < ;_ P f— q >

e doy a distribution
Lo if X(t) = OFF
"7 ~don  if X(t)=ON
e p(0) and o(0) are computed using the spectral analysis of (

1—p P
qgE[e?9ON] (1 — q)E[e?9ON] )

More generally, the Markov-modulated processes can be analyzed

2 HUAWEI
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Computing the violation probability of a backlog bound

P(q(t) > B) = P(orggztA(s, t)— C(s,t) > B)

= B(U<s<c{Als. £) — C(s. ) > BY)
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Computing the violation probability of a backlog bound

P(q(t) > B) = P(oryaztA(s, t) — C(s,t) > B)
= P(Uogsgt{A(% t) - C(57 t) > B})
Some probabilistic inequalities

1. Boole inequality (aka union bound): P(Uj>0E;) < > 5o P(Ei)
2. Chernoff Bound: P(X > a) < infy-q E[e?X]e~?2
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Computing the violation probability of a backlog bound

P(q(t) > B) = P(orggztA(s, t)— C(s,t) > B)

= B(U<s<c{Als. £) — C(s. ) > BY)

Some probabilistic inequalities
1. Boole inequality (aka union bound): P(Uj>0E;) < > 5o P(Ei)
2. Chernoff Bound: P(X > a) < infgsoE[e/X]e?2
The combination of the two inequalities is powerful for the probabilistic method (prove

the existence of combinatorial objects with probabilistic tools): proving that some
probabilities tend to 0 with the size of the object is enough.
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Computing the violation probability of a backlog bound

P(q(t) > B) = P(orggztA(s, t)— C(s,t) > B)

= B(U<s<c{Als. £) — C(s. ) > BY)

Some probabilistic inequalities
1. Boole inequality (aka union bound): P(Uj>0E;) < > 5o P(Ei)
2. Chernoff Bound: P(X > a) < infgsoE[e/X]e?2
The combination of the two inequalities is powerful for the probabilistic method (prove

the existence of combinatorial objects with probabilistic tools): proving that some
probabilities tend to 0 with the size of the object is enough.

For performance evaluation, the goal is to find a good approximation of probabilities,
and these two inequalities are not enough.
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Moment-generating-function SNC (MGF-SNC)

[Fidler 2006, Schmitt et al. 2010-]

If the arrivals and services are independent:

P(q(t) > B) < P(Us<t{A(s, t) — C(s, t) > B})
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Moment-generating-function SNC (MGF-SNC)

[Fidler 2006, Schmitt et al. 2010-]

If the arrivals and services are independent:

P(q(t) > B) < P(Us<t{A(s, t) — C(s, t) > B})
Union Bound < Y "P({A(s,t) — C(s,t) > B})

s<t

2 HUAWEI

12 /26 Huawei Public use



Moment-generating-function SNC (MGF-SNC)

[Fidler 2006, Schmitt et al. 2010-]

If the arrivals and services are independent:

P(q(t) > B) < P(Us<t{A(s, t) — C(s, t) > B})
Union Bound < Y "P({A(s,t) — C(s,t) > B})

Chernoff + Independence < ZIE[eGA(S’t)]IE[e_aC(S’t)]e_eB
s<t
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Moment-generating-function SNC (MGF-SNC)

[Fidler 2006, Schmitt et al. 2010-]

If the arrivals and services are independent:
P(q(t) > B) < P(Us<¢{A(s, t) — C(s, t) > B})
Union Bound < Y "P({A(s,t) — C(s,t) > B})
s<t
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s<t

s<t
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Moment-generating-function SNC (MGF-SNC)

[Fidler 2006, Schmitt et al. 2010-]

If the arrivals and services are independent:
P(q(t) > B) < P(Us<¢{A(s, t) — C(s, t) > B})
Union Bound < Y "P({A(s,t) — C(s,t) > B})
s<t
Chernoff + Independence < ZE[eeA(s’t)]E[efec(s’t)]e*HB
s<t
s<t
ef(oa(0)+oc(6))

—6B
S T @@ €
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Moment-generating-function SNC (MGF-SNC)

[Fidler 2006, Schmitt et al. 2010-]

If the arrivals and services are independent:
P(q(t) > B) < P(Us<¢{A(s, t) — C(s, t) > B})
Union Bound < Y "P({A(s,t) — C(s,t) > B})
s<t
Chernoff + Independence < ZE[eeA(s’t)]E[efec(s’t)]e*HB
s<t
s<t
ef(oa(0)+oc(6))

—6B
S T @@ €

e The larger 6, the larger the decay rate
e The value of 6 is constrained by pa(f) — pc(6) <0
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Contents

Stochastic Network Calculus

A Pay-Multiplexing-Only-Once result for MGF-SNC
Joint work with Paul Nikolaus and Jens Schmitt (TU Kaiserslautern)
The Pay multiplexing-only-once formula
Numerical evaluation

Mixing the martingale and MGF-SNC
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Previous MGF-SNC approach

FO) o FY AP F
——— —— ———

— » f— o
F2(0) F2(1) F2(2) F1 F1
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Previous MGF-SNC approach

O ro 7 i ik
—_— e e

— ? () (3)
Fz(o) F2(1) /__2(2) Fi F

1. Compute the (o(0), p(0)) characterization for ,__1(1) and Fz(l): both depend on
,_-1(0)' ,_-2(0) and Ci: they are not independent anymore
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Previous MGF-SNC approach
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1. Compute the (o(0), p(0)) characterization for ,__1(1) and Fz(l): both depend on
,_-1(0)' ,_-2(0) and Ci: they are not independent anymore

2. Compute the (c(0), p(0)) characterization for ,__1(2) and F3(2): both depend on
Fl(l), F2(1), F3(1) and (. The previous computation cannot be used because ,_-1(1)
and F2(1) are not independent

14 /26 Huawei Public use sré HUAWEI



Previous MGF-SNC approach

FO o £ Fy? Fy?
——— —— e —

e > co——1 @3
Fz(o) F2(1) /__2(2) F1 F1

1. Compute the (o(0), p(0)) characterization for ,__1(1) and Fz(l): both depend on
,_-1(0)' ,_-2(0) and Ci: they are not independent anymore

2. Compute the (c(0), p(0)) characterization for ,__1(2) and F3(2): both depend on
Fl(l), F2(1), F3(1) and C,. The previous computation cannot be used because ,_-1(1)

and F2(1) are not independent
3. Use the Holder inequality instead. Increase the inaccuracy of the bounds
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Previous MGF-SNC approach

O ro 7 i ik
—_— e e

= ? () (3)
Fz(o) F2(1) /__2(2) F1 F1

1. Compute the (o(0), p(0)) characterization for ,__1(1) and Fz(l): both depend on
,_-1(0)' ,_-2(0) and Ci: they are not independent anymore

2. Compute the (c(0), p(0)) characterization for ,__1(2) and F3(2): both depend on
Fl(l), F2(1), F3(1) and (. The previous computation cannot be used because ,_-1(1)
and F2(1) are not independent

3. Use the Holder inequality instead. Increase the inaccuracy of the bounds

Improvement tricks:
e Flow prolongation
e Lyapunov inequality
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Pay multiplexing only once

Idea: Directly compute the left-over service curve for flow 1 on its path.

(1) (2) (3)

(0) 1) 3 F3 F3
e h —— ———
— — > (2) (3)

F2(0) Fél) F2(2) Fi F
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Pay multiplexing only once

Idea: Directly compute the left-over service curve for flow 1 on its path.
= t3 < 1y,

Y fp
——a——— ———
FO FO F@ " F® F®

F3(0, t3) + FS(0, ) > FA0, t3) + FS(0, t3) + Ca(t3, ta)
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Pay multiplexing only once

Idea: Directly compute the left-over service curve for flow 1 on its path.
= th < t3 < tg,

(1) (2) (3)
(0) @ F3 F3 F3
A - — —e———
—] > oL— 1 ‘3
,__2(0) ,__2(1) £(2) Fl( ) Fl( )

F3(0, ta) + F(0, t5) > F2(0, £3) + FP(0, t3) + Ca(ts, ta)
F2(0,13) + F2(0, 13) + F(0, 13) > FV(0, 1) + FP(0, 1) + FL(0, ) + Colto, 3)
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Pay multiplexing only once

Idea: Directly compute the left-over service curve for flow 1 on its path.
dt < tr < t3 < ta,

(1) (2) (3)
(0) 1) 3 F3 F3
e e —e——
> (2 3
F2(0) F2(1) E 2) Fl( ) Fl( )

F1(3)(0, ts) + Fgfs)(O, ty) > F1(2)(0, t3) + F3(2)(0, t3) + C3(t3, ta)
F2(0, t3) + FS(0, 3) + FS(0, 3) > F(0, &) + FP(0, &) + (0, 1) + Co(ta, t3)
FO(0, 1) + FN(0, &) > FO(0, 1) + F2(0, 1) + Cu(11, u)
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Pay multiplexing only once

Idea: Directly compute the left-over service curve for flow 1 on its path.
dty <t < t3 < ty,

(1) (2) (3)
(0) ) F3 F3 F3
e s —
— 7 ~(2) (3)
/_—2(0) F2(1) F(z) Fi F
F(0 ,r4)+F(3’( 0,t) > F2(0,13) + F(0, 13) + Ca(t3, ta)
FO(0,t5) + F2(0, 13) + F2(0,13) = FV(0, 1) + FL2(0, 82) + F{V(0, 1) + Co(ta, t3)
F (o, 2)+F(”( t) > FO(0, 1) + F2(0, 1) + Ci(tr, u)
F(0, 1) + F(3)( 0,ta) + F(0,t5) > FO(0, 1) + F2(0, 11) + F{V(0, 1)
+ Ci(t1, t2) + Co(to, t3) + C3(t3, ta)
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Pay multiplexing only once
Idea: Directly compute the left-over service curve for flow 1 on its path.
dty <t < t3 < ty,

£0) £ A F? Y
— ? (2 (3)
I,__z(o) I,__2(1) /__2(2) F1 F1
F3 0 ,t4)—|—F(3)( 0,t5) > FI2(0, t3) + F{(0, t3) + Ca(ts, ta)
FA(0, t3) + F2(0,13) + F2(0,13) > F(0, &) + FS(0, 1) + F(0, £2) + Co(ta, t3)
FO(o, 2)+F<”( t2) > FO0, 1) + (0, ) + Cu(ta, u)
F3(o, t4)+F(3)( cta) + F(0,3) > FO(0,01) + F2(0, 11) + FLV(0, 1)

+ Ci(t1, ) + Co(t2, t3) + C3(t3, ta)

F3(0,t) > FO(0, 1) + Gi(t1, ) + Colta, ts) + Ca(ts, ta) — FO(t1, t3) — FO (£, ta).
2 HUAWEI
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Pay multiplexing only once
Idea: Directly compute the left-over service curve for flow 1 on its path.

F0) F Y F3” Fs?
_— ———

C > (2) (3)
I,__z(o) F2(1) /__2(2) Fi F

Theorem
The end-to-end service for flow 1 is

Ceoe(ti, ta) =( _inf A0, t1)+Ci(tr, )+ Co(to, t3)+Ca(ts, ta)—Ao(t1, t3)—As(t, ta))+

t1<tr<t3<ty

(x)+ = max(0, x)
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Pay multiplexing only once
Idea: Directly compute the left-over service curve for flow 1 on its path.

O ro A A ik
—_— ——

== > (2) (3)
I,__z(o) F2(1) /__2(2) Fi F

Theorem
The end-to-end service for flow 1 is
Ceoe(ti, ta) =( _inf A0, t1)+Ci(tr, )+ Co(to, t3)+Ca(ts, ta)—Ao(t1, t3)—As(t, ta))+
t1<tr<t3<ty
(x)+ = max(0, x)

E[/e;ﬁecm(u,t)] cannot biﬁi?guejf?: with a (c(0), p(#))-constraint. sré HUAWEI



Bounding Generating function for the end-to-end service

Use generating functions to generalize the (o(6), p(#))-constraints

efo(0)

Vs < t, E[e"0C(s:1)] < g=boc(®)+(t=s)oc(?) ~ Fc(0,z) = 1= 26 0oc(0)
— ze

Delay, backlog violation probabilities and departure processes can be expressed using
generating functions

Service bounding generating function for the end-to-end service

69(051 +UA2 ) e0(052 +UA3) e9053

FCe2e(07 Z) =

1 — e pci=pray) ;1 _ o= 0P, —Pay—pa3) ;1 _ o= 0lPcs—Paz)

2 HUAWEI
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Computing the performance bound bounds

1. Use Fc, (6, z) for computing the delay or backlog bound

2. For the delay, the formula can be simplified if Fc_,, has multiple singularities
(basic but tedious computations) to a single singularity

3. optimization of 6:

» For each server j , there exists a maximum value of 6; such that e g =ra) < 1
» One need to choose 6 such that § < min;6;, minimizing the performance bound

4. Only one parameter to optimize!

2 HUAWEI
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Numerical evaluation

1e+00 1 &
Q,
> ] kN
= N &
8 te027
[e) X
Explicit
c - - ] Y
2 1e-04 v Bound Y
] Simulations %
K] 3
= 1e-06- | PMOO-AC
%
0 10 20 30
Delay
1
2. Easier and faster to compute than the standard ones
3
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Delay bound

100 -

80 -

60 -

40

Standard Bound

PMOO-AC

8 12
Number of servers

. The new bound catches the decay rate of the violation probability

. Still not very satisfactory (the gap with simulation is still too large)

2 HUAWEI



Contents

Stochastic Network Calculus

A Pay-Multiplexing-Only-Once result for MGF-SNC
Joint work with Paul Nikolaus and Jens Schmitt (TU Kaiserslautern)

Mixing the martingale and MGF-SNC
A martingale for the arrival and service processes
Performance bounds
Numerical evaluation

19 / 26 Huawei Public use

2 HUAWEI



Martingale SNC

There exists a vector v such that

M(0, s, t) = v(Xs)e A~ Cls.0=(oa(0)-pc(8))(t5))

is a backward martingale: E[M(0,s —1,t) | Fu>s] = M(0,s,t)

20 / 26 Huawei Public use

[Chang 2000, Ciucu 2014, Duffield 1994, Kingman 1963]
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Martingale SNC

[Chang 2000, Ciucu 2014, Duffield 1994, Kingman 1963]
There exists a vector v such that

M(6,s, t) = V(Xs)e9(A(Svf)—C(Sat)—(pA(H)—pc(G))(f—S))
is a backward martingale: E[M(0,s —1,t) | Fu>s] = M(0,s,t)

From Doob's inequality for super-martingales, there exists a relatively small constant
©(0) (depending on v) such that

P(q(t) > B) < P(sup (A1) =C(s:t)) - g0B)
s<t
< @(0)e Y.
This formula is valid for all 6 such that pa(0) < pc(0).

2 HUAWEI
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A martingale for the arrivals and service processes

To avoid technicalities/heavy notations, we focus on the i.i.d. cases (but no difficulty for MMPs)
Let A(s, t) be an arrival process, A(s,t) = 3.t" a;, where (a;) is i.i.d. Let
e94(%) = E[e’] the MGF of a.

Martingale associated to A

Ma(, s, t) = e?Als:t) g=0pa(0)(t=5)

Backward martingale: E[Ma(0,s — 1,t) | Fu>s] = Ma(6, s, t).
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A martingale for the arrivals and service processes

To avoid technicalities/heavy notations, we focus on the i.i.d. cases (but no difficulty for MMPs)
Let A(s,t) be an arrival process, A(s,t) = Zf;sl aj, where (a;) is i.i.d. Let
A0 = E[e?21] the MGF of ay.

Martingale associated to A
MA(Q’ s, t) — eeA(svt)e_epA(e)(t_s)
Backward martingale: E[Ma(0,s —1,t) | Fu>s] = Ma(6,s, t).

Let C(s, t) be a service process, C(s,t) = 3! ¢;, where (¢;) is i.i.d. Let
e 0rc(0) = E[e=09] the MGF of c;.

Martingale associated to C

MC(H, S, t) = e_ec(svt)eepC(G)(f—S)
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Product of independent martingales

ﬂ
ﬂ
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Product of independent martingales

A L L (Q
~1 ~ L4

PMOO formula for the backlog:

sup  A(ty, t3) — Ci(t, o) — Go(t2, t3)
t1<tr<t3

{a(ts) > B} <{3Ft1 < ta < t3, A(t1, t3) — Gi(t1, t2) — Go(t2, t3) > B}

2 HUAWEI
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Product of independent martingales

A L L (Q
~1 ~ L4

PMOO formula for the backlog:

sup  A(ty, t3) — Ci(t, o) — Go(t2, t3)
t1<tr<t3

{a(ts) > B} <{3Ft1 < ta < t3, A(t1, t3) — Gi(t1, t2) — Go(t2, t3) > B}

e A martingale cannot be defined directly for A(t1, t3) — Ci(t1, t2) — Co(t2, t3)
o if ty is fixed, (Ma(0, t1, t3)Mc, (0, t1, t2))r,<t, is @ backward martingale

2 HUAWEI
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Backlog bound

A L L [Q
<T <7 I 4

Martingale-SNC
P(q(ts) > B) < > P(sup A(ty, t3) — Ci(t1, t2) — Co(t2, t3) > B)
ty<t; NSP

e—@B

1 — e pcy—pa)’
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Backlog bound

E
—
[
N
L 2

Martingale-SNC
P(q(ts) > B) < > P(sup A(ty, t3) — Ci(t1, t2) — Co(t2, t3) > B)
ty<t; NSP

e—@B

1 — e pcy—pa)’

MGF-SNC
P(q(ts) > B) < Y P(A(ts, ts) — Gi(t1, t2) — Co(t2, t3) > B)

t1<tp<t3

e—GB

S (1 — e_e(pCQ_pA))(l — e_e(pcl_pA)) ’

2 HUAWEI
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General framework the mixed martingale/MGE SNC

For any tandem network:

e Write the PMOO service
e Use the Doob's inequality can be applied locally at one server

P at the first server is always possible

» under some additional hypothesis (e.g. for sink trees with deterministic service) at
any server

> the best choice is to choose the server that minimizes sup{0 | pc,(0) > >_;c; pa,(0)}

e Use the union bound at other places

2 HUAWEI
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Numerical evaluation

Violation probability
& &8 & 8
& o . u

,_.
S
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Two servers in tandem
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Interleaved (bottlenck is server 2)
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Conclusion

Summary
e A new PMOO formula to improve the MGF-SNC:

» More accurate bounds (catch the decay rate of the violations probabilities)
» Faster to compute (no Holder inequality, only one parameter to optimize)

o A first step to generalize the use of martingales in the multiple server case

» Application on the first server
> In some cases, possible to apply it to another server (e.g. in sink-tree tandems with
constant-rate servers

Future work

e Generalize the PMOO to other service policies (for example to FIFO networks)

e Generalize to more processes (Auto-regressive)
e General application of the martingale bound to another server? to several servers?

» New probabilistic tools needed...

2 HUAWEI
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