

The Joint Spectral Radius Approach to the Convergence of Best Response Dynamics in Routing Games

Olivier Brun, Balakrishna J. Prabhu,
Tatiana Seregina, Morgan Patty

LAAS–CNRS, Toulouse, France

July 5th, 2022

Outline

Routing Game over Parallel Links and Best Response Dynamics

The Joint Spectral Radius Approach

Structure of Jacobian Matrices

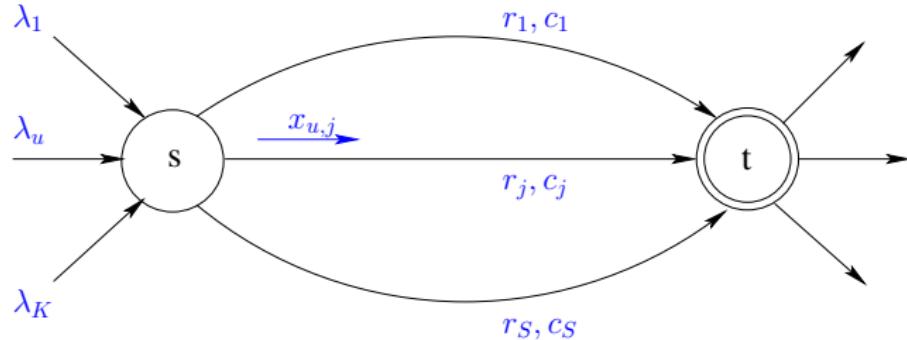
Two-player routing game

Conclusion

Routing Game over Parallel Links and Best Response Dynamics

Atomic Routing Game

- ▶ Routing game between K users over S parallel links



- ▶ Routing strategy of user u : $\mathcal{X}_u = \left\{ \mathbf{x}_u \in \mathbb{R}_+^S : \sum_{j \in S} x_{u,j} = \lambda_u \right\}$.
- ▶ Strategy profile: $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_K) \in \mathcal{X}$, where $\mathcal{X} = \otimes_u \mathcal{X}_u$
- ▶ The cost per unit of traffic of link j is $\frac{c_j}{r_j} \phi(\rho_j)$

Best Response of a Player

- ▶ Each user u controls how its own traffic is splitted over the parallel links and seeks to **minimize its own cost**

$$\text{minimize } T_u(\mathbf{x}_u^*, \mathbf{x}_{-u}) = \sum_{j \in \mathcal{S}} \frac{c_j}{r_j} x_{u,j}^* \phi(\rho_j) \quad (\text{BR-}u)$$

subject to

$$\mathbf{x}_u^* \in \mathcal{X}_u \text{ and } \rho_j < 1 \text{ for all } j \in \mathcal{S}.$$

- ▶ Solution known as the **best response** of user u at \mathbf{x}
- ▶ The **marginal costs** $\frac{\partial T_u}{\partial x_{u,j}}(\mathbf{x}_u^*, \mathbf{x}_{-u})$ are **minimal** for all links j used by player u in its best response.

Nash Equilibrium

- $x^{(u)}(\mathbf{x})$ is the point reached from \mathbf{x} after the best response of user u

$$x^{(u)}(\mathbf{x}) = (\mathbf{x}_u^*, \mathbf{x}_{-u})$$

- A point \mathbf{x}^* is **Nash Equilibrium** if

$$\mathbf{x}^* = x^{(u)}(\mathbf{x}^*)$$

for all u .

- Under some assumptions on $\phi()$, **existence and uniqueness of Nash Equilibrium** follow from [ORS93]

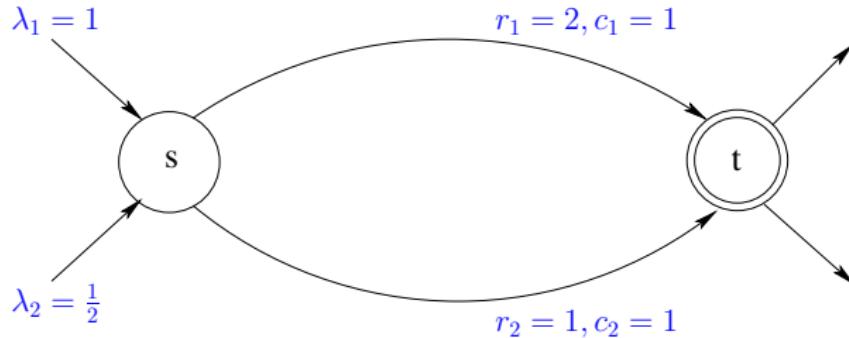
(Sequential) Best Response Dynamics

- ▶ Players update their strategies sequentially in the order $1, 2, \dots, K$
- ▶ Let $\hat{x}^{(1)}(\mathbf{x}_0)$ be the strategy profile reached from \mathbf{x}_0 after **one round**

$$\hat{x}^{(1)}(\mathbf{x}_0) = x^{(K)} \circ x^{(K-1)} \circ \dots \circ x^{(1)}(\mathbf{x}_0)$$

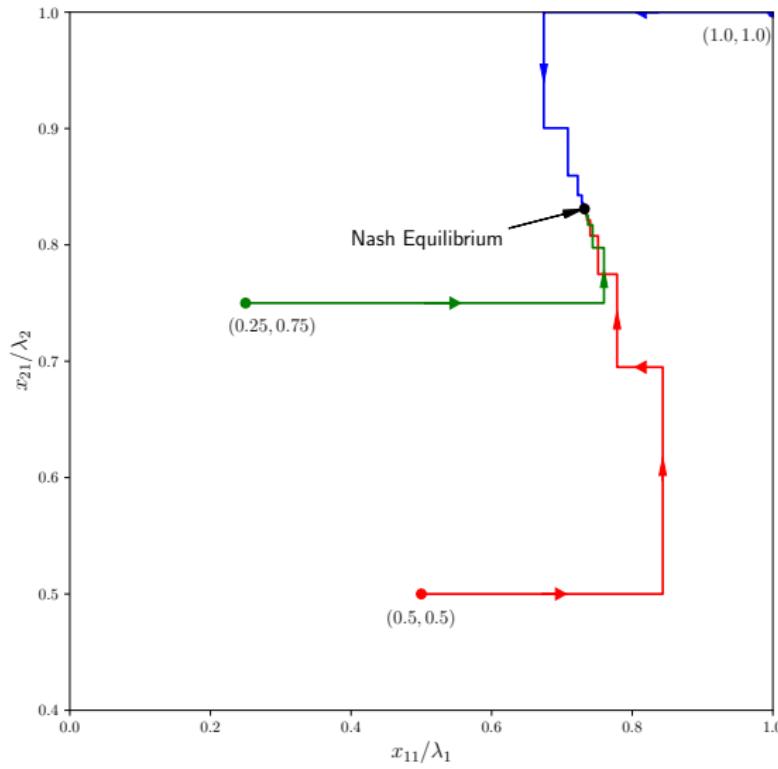
- ▶ Similarly, $\hat{x}^{(n)}(\mathbf{x}_0)$ is the strategy profile reached after **n rounds**
- ▶ **Question:** does $\hat{x}^{(n)}(\mathbf{x}_0)$ converge as $n \rightarrow \infty$?

Example



- We assume $\phi(x) = \frac{1}{1-x}$
- Explicit expression for the **best response** of user u

Example



Existing Convergence Results

- ▶ Two parallel links and two players [ORS93]
- ▶ Two parallel links and an arbitrary number of players assuming a linear latency function [ABJS01]
- ▶ Two players and an arbitrary number of parallel links [Mer09]

☞ A. Orda et al., [Competitive routing in multi-user communication networks](#), IEEE/ACM ToN, Oct. 1993.

☞ E. Altman et al., [Routing into two parallel links: Game-theoretic distributed algorithms](#), Journal of Parallel and Distributed Computing, 2001.

☞ G.B. Mertzios, [Fast convergence of routing games with splittable flows](#), 2nd Int. Conf. on Theoretical and Mathematical Foundations of Computer Science, 2009.

The Joint Spectral Radius Approach

The Potential Function Approach

- ▶ A game is an **(exact) potential game** [MS96] if there exists $F : \mathcal{X} \rightarrow \mathbb{R}$ such that for all players u

$$T_u(\mathbf{x}'_u, \mathbf{x}_{-u}) - T_u(\mathbf{x}_u, \mathbf{x}_{-u}) = F(\mathbf{x}'_u, \mathbf{x}_{-u}) - F(\mathbf{x}_u, \mathbf{x}_{-u})$$

- ▶ Convergence of BR dynamics to a Nash Equilibrium [Dur18]
- ▶ The **symmetric routing game** is a potential game [BP16]

$$F(\mathbf{x}) = \sum_{j \in \mathcal{S}} c_j \rho_j \phi(\rho_j) + (K - 1) \int_0^{\rho_j} c_j \phi(z) dz$$

- ▶ Potential not easy to find for **asymmetric games**

☞ D. Monderer and L.S. Shapley, [Potential Games](#), Games and Economic Behavior, 14, 1996.

☞ S. Durand, [Analysis of Best Response Dynamics in Potential Games](#), PhD thesis, Grenoble, 2018.

☞ O. Brun and B.J. Prabhu, [Worst-case analysis of non-cooperative load balancing](#), Ann. Oper. Res.,

239(2), 2016.

The Joint Spectral Radius Approach

- ▶ For any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, the Mean-Value Theorem implies that

$$\begin{aligned}\|\hat{x}^{(n)}(\mathbf{y}) - \hat{x}^{(n)}(\mathbf{x})\| &= \left\| \int_0^1 D\hat{x}^{(n)}(\mathbf{x} + th) \cdot \mathbf{h} \, dt \right\|, \text{ where } \mathbf{h} = \mathbf{y} - \mathbf{x}, \\ &\leq \int_0^1 \left\| D\hat{x}^{(n)}(\mathbf{x} + th) \right\| \|h\| \, dt, \\ &\leq \varnothing(\mathcal{X}) \int_0^1 \left\| \prod_{i=1}^n D\hat{x}^{(1)}(\mathbf{z}_i(t)) \right\| \, dt, \\ &\leq \varnothing(\mathcal{X}) \sup_{M_i \in \mathcal{J}} \|M_n \dots M_1\|,\end{aligned}$$

where \mathcal{J} is the set of one-round Jacobian matrices

- ▶ **Asymptotic convergence** provided that **products of n Jacobian matrices** converge in norm to 0 as $n \rightarrow \infty$ [MPXY07]

Joint Spectral Radius

- ▶ For a matrix M , the growth rate of $\|M^n\|$ is characterized by the spectral radius $\rho(M)$: $\rho(M)^n = \rho(M^n) \approx \|M^n\|$
- ▶ The Joint Spectral Radius [RS60] of \mathcal{J}

$$\rho(\mathcal{J}) = \limsup_{n \rightarrow \infty} \max_{M_i \in \mathcal{J}} \|M_n \dots M_1\|^{\frac{1}{n}}$$

coincides [BW92] with its Generalized Spectral Radius [DL92]

$$\bar{\rho}(\mathcal{J}) = \limsup_{n \rightarrow \infty} \max_{M_i \in \mathcal{J}} \rho(M_n \dots M_1)^{\frac{1}{n}}$$

- ▶ Show that the JSR of the set \mathcal{J} of one-round Jacobian matrices is strictly smaller than 1

☞ Rota & Strang, [A note on the joint spectral radius](#), Indag. Math 22, 1960.

☞ Berger & Wang, [Bounded semigroups of matrices](#), Linear Algebra Appl., 166, 1992.

☞ Daubechies & Lagarias, [Sets of matrices all infinite products of which converge](#), Lin. Alg. and its App.,

Structure of Jacobian Matrices

Structure of the Jacobian matrices

- ▶ $x^{(u)}$ is **differentiable** at every point $\mathbf{x} \in \mathcal{X}$ such that no link is **marginally used** by player u in its best-response at point \mathbf{x}
- ▶ The **Jacobian** of $x^{(u)}$ at $\mathbf{x} \in \mathcal{X}$ is defined as

$$Dx^{(u)}(\mathbf{x}) = \begin{pmatrix} \frac{\partial x_1^{(u)}}{\partial \mathbf{x}_1}(\mathbf{x}) & \dots & \frac{\partial x_1^{(u)}}{\partial \mathbf{x}_u}(\mathbf{x}) & \dots & \frac{\partial x_1^{(u)}}{\partial \mathbf{x}_K}(\mathbf{x}) \\ \vdots & \ddots & & & \vdots \\ \frac{\partial x_u^{(u)}}{\partial \mathbf{x}_1}(\mathbf{x}) & \dots & \frac{\partial x_u^{(u)}}{\partial \mathbf{x}_u}(\mathbf{x}) & \dots & \frac{\partial x_u^{(u)}}{\partial \mathbf{x}_K}(\mathbf{x}) \\ \vdots & & \ddots & & \vdots \\ \frac{\partial x_K^{(u)}}{\partial \mathbf{x}_1}(\mathbf{x}) & \dots & \frac{\partial x_K^{(u)}}{\partial \mathbf{x}_u}(\mathbf{x}) & \dots & \frac{\partial x_K^{(u)}}{\partial \mathbf{x}_K}(\mathbf{x}) \end{pmatrix},$$

where the (v, w) -block is

$$\frac{\partial x_v^{(u)}}{\partial \mathbf{x}_w}(\mathbf{x}) = \left(\frac{\partial x_{v,i}^{(u)}}{\partial x_{w,j}}(\mathbf{x}) \right)_{i \in \mathcal{S}, j \in \mathcal{S}},$$

Structure of the Jacobian matrices

- ▶ $x^{(u)}$ is **differentiable** at every point $\mathbf{x} \in \mathcal{X}$ such that no link is **marginally used** by player u in its best-response at point \mathbf{x}
- ▶ The **Jacobian of $x^{(u)}$** at $\mathbf{x} \in \mathcal{X}$ is defined as

$$Dx^{(u)}(\mathbf{x}) = \begin{pmatrix} \frac{\partial x_1^{(u)}}{\partial \mathbf{x}_1}(\mathbf{x}) & \dots & \frac{\partial x_1^{(u)}}{\partial \mathbf{x}_u}(\mathbf{x}) & \dots & \frac{\partial x_1^{(u)}}{\partial \mathbf{x}_K}(\mathbf{x}) \\ \vdots & \ddots & & & \vdots \\ \frac{\partial x_u^{(u)}}{\partial \mathbf{x}_1}(\mathbf{x}) & \dots & 0 & \dots & \frac{\partial x_u^{(u)}}{\partial \mathbf{x}_K}(\mathbf{x}) \\ \vdots & & \ddots & & \vdots \\ \frac{\partial x_K^{(u)}}{\partial \mathbf{x}_1}(\mathbf{x}) & \dots & \frac{\partial x_K^{(u)}}{\partial \mathbf{x}_u}(\mathbf{x}) & \dots & \frac{\partial x_K^{(u)}}{\partial \mathbf{x}_K}(\mathbf{x}) \end{pmatrix},$$

where the (v, w) -block is

$$\frac{\partial x_v^{(u)}}{\partial \mathbf{x}_w}(\mathbf{x}) = \left(\frac{\partial x_{v,i}^{(u)}}{\partial x_{w,j}}(\mathbf{x}) \right)_{i \in \mathcal{S}, j \in \mathcal{S}},$$

Structure of the Jacobian matrices

- ▶ $x^{(u)}$ is **differentiable** at every point $\mathbf{x} \in \mathcal{X}$ such that no link is **marginally used** by player u in its best-response at point \mathbf{x}
- ▶ The **Jacobian** of $x^{(u)}$ at $\mathbf{x} \in \mathcal{X}$ is defined as

$$Dx^{(u)}(\mathbf{x}) = \begin{pmatrix} I & \dots & 0 & \dots & 0 \\ \vdots & \ddots & & & \vdots \\ \frac{\partial x_u^{(u)}}{\partial \mathbf{x}_1}(\mathbf{x}) & \dots & 0 & \dots & \frac{\partial x_u^{(u)}}{\partial \mathbf{x}_K}(\mathbf{x}) \\ \vdots & & \ddots & & \vdots \\ 0 & \dots & 0 & \dots & I \end{pmatrix},$$

where the (v, w) -block is

$$\frac{\partial x_v^{(u)}}{\partial \mathbf{x}_w}(\mathbf{x}) = \left(\frac{\partial x_{v,i}^{(u)}}{\partial x_{w,j}}(\mathbf{x}) \right)_{i \in \mathcal{S}, j \in \mathcal{S}},$$

Structure of the Jacobian matrices

- ▶ $x^{(u)}$ is **differentiable** at every point $\mathbf{x} \in \mathcal{X}$ such that no link is **marginally used** by player u in its best-response at point \mathbf{x}
- ▶ The **Jacobian** of $x^{(u)}$ at $\mathbf{x} \in \mathcal{X}$ is defined as

$$Dx^{(u)}(\mathbf{x}) = \begin{pmatrix} I & \dots & 0 & \dots & 0 \\ \vdots & \ddots & & & \vdots \\ M_u & \dots & 0 & \dots & M_u \\ \vdots & & & \ddots & \vdots \\ 0 & \dots & 0 & \dots & I \end{pmatrix},$$

where the (v, w) -block is

$$\frac{\partial x_v^{(u)}}{\partial \mathbf{x}_w}(\mathbf{x}) = \left(\frac{\partial x_{v,i}^{(u)}}{\partial x_{w,j}}(\mathbf{x}) \right)_{i \in \mathcal{S}, j \in \mathcal{S}},$$

Structure of the Jacobian matrices

- ▶ The matrix M_u can be derived from the **equality of marginal costs** and the **flow conservation constraint**
- ▶ There exist $\gamma, \theta \in \mathbb{R}_+^S$ such that $M_u = [\Gamma B - I] \Theta$

$$M_u = \left[\begin{pmatrix} \gamma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \gamma_S \end{pmatrix} \begin{pmatrix} 1 & \dots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \dots & 1 \end{pmatrix} - \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix} \right] \begin{pmatrix} \theta_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \theta_S \end{pmatrix}$$

- ▶ The vectors γ, θ are such that $\sum_i \gamma_i = 1$, $\theta_i = 0$ if and only if $\gamma_i = 0$ and $\frac{1}{2} \leq \theta_i \leq q < 1$ if $\theta_i \neq 0$

Structure of the Jacobian matrices

- ▶ The matrix M_u can be derived from the **equality of marginal costs** and the **flow conservation constraint**
- ▶ There exist $\gamma, \theta \in \mathbb{R}_+^s$ such that $M_u = [\Gamma B - I] \Theta$

$$M_u = \begin{pmatrix} (\gamma_1 - 1)\theta_1 & \gamma_1\theta_2 & \dots & \gamma_1\theta_s \\ \gamma_2\theta_1 & (\gamma_2 - 1)\theta_2 & \dots & \gamma_2\theta_s \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_s\theta_1 & \gamma_s\theta_2 & \dots & (\gamma_s - 1)\theta_s \end{pmatrix}$$

- ▶ The vectors γ, θ are such that $\sum_i \gamma_i = 1$, $\theta_i = 0$ if and only if $\gamma_i = 0$ and $\frac{1}{2} \leq \theta_i \leq q < 1$ if $\theta_i \neq 0$

One round Jacobian

- One round Jacobian: $D\hat{x}^{(1)}(\mathbf{x}) = Dx^{(K)}(\mathbf{x}) \dots Dx^{(1)}(\mathbf{x})$
- Example for two players

$$D\hat{x}^{(1)}(\mathbf{x}) = \begin{pmatrix} I & 0 \\ M_2 & 0 \end{pmatrix} \begin{pmatrix} 0 & M_1 \\ 0 & I \end{pmatrix} = \begin{pmatrix} 0 & M_1 \\ 0 & M_2 M_1 \end{pmatrix}$$

- Example for three players

$$\begin{aligned} J &= \begin{pmatrix} I & 0 & 0 \\ 0 & I & 0 \\ M_3 & M_3 & 0 \end{pmatrix} \begin{pmatrix} I & 0 & 0 \\ M_2 & 0 & M_2 \\ 0 & 0 & I \end{pmatrix} \begin{pmatrix} 0 & M_1 & M_1 \\ 0 & I & 0 \\ 0 & 0 & I \end{pmatrix} \\ &= \begin{pmatrix} 0 & M_1 & M_1 \\ 0 & M_2 M_1 & M_2 M_1 + M_2 \\ 0 & M_3(M_1 + M_2 M_1) & M_3(M_1 + M_2 + M_2 M_1) \end{pmatrix} \end{aligned}$$

Conjecture on JSR

Conjecture

The JSR of the set of one-round Jacobians is strictly smaller than one

- ▶ Numerical experiments suggest this is true
- ▶ If the conjecture is true, then it implies the **convergence of the best-response algorithm** for routing games.

Two-player routing game

Two-player routing game

Theorem

For the two-player routing game, the sequential best-response dynamics converges for any initial point $\mathbf{x}_0 \in \mathcal{X}$.

Sketch of proof.

- The *n-round Jacobian* is of the form

$$J^{(n)} = \begin{pmatrix} 0 & M_1^{(n)} \\ 0 & M_2^{(n)} M_1^{(n)} \end{pmatrix} \cdots \begin{pmatrix} 0 & M_1^{(1)} \\ 0 & M_2^{(1)} M_1^{(1)} \end{pmatrix} = \begin{pmatrix} 0 & M_1^{(n)} M_2^{(n-1)} \dots M_1^{(1)} \\ 0 & M_2^{(n)} M_1^{(n)} \dots M_1^{(1)} \end{pmatrix}$$

- Show that the JSR of the set \mathcal{M} of matrices of the form $[\Gamma B - I] \Theta$ is strictly smaller than 1

Two-player routing game

- ▶ Any product M of such matrices is such that
 - ▶ The sum over any column is zero,
 - ▶ If $M\mathbf{x} = \lambda\mathbf{x}$ for some $\lambda \neq 0$, then $\sum_i x_i = 0$,
 - ▶ For any diagonal D , $\rho(M) \leq \rho(DB + M) \leq \|DB + M\|_1$.
- ▶ With $d_{i,i} = -\min_j (m_{i,j})$ or $d_{i,i} = -\max_j (m_{i,j})$, we obtain

$$\rho(M) \leq \mu_{\min}(M) = - \sum_i \min_j (m_{i,j})$$

$$\rho(M) \leq \mu_{\max}(M) = \sum_i \max_j (m_{i,j})$$

- ▶ Induction: if $M = X [\Gamma B - I] \Theta$

$$\mu_{\min}(M) \leq \theta_{\max} \mu_{\max}(X) \quad \text{and} \quad \mu_{\max}(M) \leq \theta_{\max} \mu_{\min}(X).$$

Two-player routing game

- ▶ If $M = \prod_{k=1}^n [\Gamma^{(k)} B - I] \Theta^{(k)}$, then

$$\rho(M) \leq \prod_{k=1}^n \theta_{\max}^{(k)} \leq q^n$$

- ▶ The JSR of \mathcal{M} is upper bounded by $q < 1$
- ▶ Same result proved by Mertzios [Mer09] using a potential function argument.

Conclusion

Conclusion

- ▶ Convergence of the sequential BR dynamics for atomic routing games over parallel links
 - ✓ Systematic approach relying only on the structure of the Jacobian matrices
 - ✓ We conjecture that the JSR of the set of one-round Jacobians is strictly smaller than one
 - ✓ Proof of convergence in the case of two players
- ▶ Future works
 - ✓ Convergence for the routing game over two links for an arbitrary number of players
 - ✓ Show that the conjecture is true in the general case
 - ✓ Extension to more general networks and to more complex BR dynamics

Questions?

References

- E. Altman, T. Basar, T. Jimenez, and N. Shimkin.
Routing into two parallel links: Game-theoretic distributed algorithms.
Journal of Parallel and Distributed Computing, 61(9):1367–1381, September 2001.
- Olivier Brun and Balakrishna J. Prabhu.
Worst-case analysis of non-cooperative load balancing.
Ann. Oper. Res., 239(2):471–495, 2016.
- Marc A. Berger and Yang Wang.
Bounded semigroups of matrices.
Linear Algebra and its Applications, 166:21–27, 1992.
- I. Daubechies and J. C. Lagarias.
Sets of matrices all infinite products of which converge.
Linear Algebra Appl., 161:227–263, 1992.
- Stéphane Durand.
Analysis of Best Response Dynamics in Potential Games.
Theses, Université Grenoble Alpes, December 2018.
- G.B. Mertzios.
Fast convergence of routing games with splittable flows.
In *In Proceedings of the 2nd International Conference on Theoretical and Mathematical Foundations of Computer Science (TMFCS)*, pages 28– 33, Orlando, FL, USA, July 2009.

K.L. Mak, J.G. Peng, Z.B. Xu, and K.F.C. Yiu.

A new stability criterion for discrete-time neural networks: Nonlinear spectral radius.

Chaos, Solitons and Fractals, 31(2):424 – 436, 2007.

Dave Monderer and Lloyd S. Shapley.

Potential games.

Games and Economic Behavior, 14:124–143, 1996.

A. Orda, R. Rom, and N. Shimkin.

Competitive routing in multi-user communication networks.

IEEE/ACM Trans. on Networking, 1(5), October 1993.

G. C. Rota and W. G. Strang.

A note on the joint spectral radius.

Indag. Math., 22:379–381, 1960.

Two-link routing game

- If $M' = (\Gamma' B - I) \Theta'$ and $M = (\Gamma B - I) \Theta$, then $M M' = \text{tr}(M) M'$
- For 3 players, the **one-round Jacobian** is of the form $J = A_1 \otimes M_1 + A_2 \otimes M_2$, where

$$A_1 = \begin{pmatrix} 0 & 1 & 1 \\ 0 & r_2 & r_2 \\ 0 & r_3(1+r_2) & r_3(1+r_2) \end{pmatrix} \text{ and } A_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & r_3 \end{pmatrix}$$

- The **Jacobian over n rounds** is of the form

$$J^{(n)} = Z^{(n)} \dots Z^{(2)} A_1 \otimes M_1 + Z^{(n)} \dots Z^{(2)} A_2 \otimes M_2$$

where $Z^{(n)} = r_1^{(n)} A_1^{(n)} + r_2^{(n)} A_2^{(n)}$