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Atomic Routing Game

I Routing game between K users over S parallel links

ts

λ1

λu

λK

r1, c1

rS, cS

rj, cj

xu,j

I Routing strategy of user u: Xu =
{
xu ∈ RS

+ :
∑

j∈S xu,j = λu

}
.

I Strategy profile: x = (x1, . . . , xK ) ∈ X , where X = ⊗uXu

I The cost per unit of traffic of link j is
cj
rj
φ(ρj)
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Best Response of a Player

I Each user u controls how its own traffic is splitted over the parallel
links and seeks to minimize its own cost

minimize Tu(x∗u, x−u) =
∑
j∈S

cj
rj
x∗u,j φ(ρj) (BR-u)

subject to

x∗u ∈ Xu and ρj < 1 for all j ∈ S.

I Solution known as the best response of user u at x

I The marginal costs ∂Tu

∂xu,j
(x∗u, x−u) are minimal for all links j used by

player u in its best response.
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Nash Equilibrium

I x (u)(x) is the point reached from x after the best response of user u

x (u)(x) = (x∗u, x−u)

I A point x∗ is Nash Equilibrium if

x∗ = x (u) (x∗)

for all u.

I Under some assumptions on φ(), existence and uniqueness of Nash
Equilibrium follow from [ORS93]

+ A. Orda et al., Competitive routing in multi-user communication networks, IEEE/ACM ToN, Oct. 1993.
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(Sequential) Best Response Dynamics

I Players update their strategies sequentially in the order 1, 2, . . . ,K

I Let x̂ (1) (x0) be the strategy profile reached from x0 after one round

x̂ (1) (x0) = x (K) ◦ x (K−1) ◦ . . . ◦ x (1)(x0)

I Similarly, x̂ (n) (x0) is the strategy profile reached after n rounds

I Question: does x̂ (n) (x0) converge as n→∞?
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Example

ts

r2 = 1, c2 = 1

λ1 = 1

λ2 = 1
2

r1 = 2, c1 = 1

I We assume φ(x) = 1
1−x

I Explicit expression for the best response of user u
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Example
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Existing Convergence Results

I Two parallel links and two players [ORS93]

I Two parallel links and an arbitrary number of players assuming a
linear latency function [ABJS01]

I Two players and an arbitrary number of parallel links [Mer09]

+ A. Orda et al., Competitive routing in multi-user communication networks, IEEE/ACM ToN, Oct. 1993.

+ E. Altman et al., Routing into two parallel links: Game-theoretic distributed algorithms, Journal of

Parallel and Distributed Computing, 2001.

+ G.B. Mertzios, Fast convergence of routing games with splittable flows, 2nd Int. Conf. on Theoretical

and Mathematical Foundations of Computer Science, 2009.
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The Joint Spectral Radius Approach
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The Potential Function Approach

I A game is an (exact) potential game [MS96] if there exists
F : X → R such that for all players u

Tu (x′u, x−u)− Tu (xu, x−u) = F (x′u, x−u)− F (xu, x−u)

I Convergence of BR dynamics to a Nash Equilibrium [Dur18]

I The symmetric routing game is a potential game [BP16]

F (x) =
∑
j∈S

cjρjφ(ρj) + (K − 1)

∫ ρj

0

cj φ(z)dz

I Potential not easy to find for asymmetric games

+ D. Monderer and L.S. Shapley, Potential Games, Games and Economic Behavior, 14, 1996.

+ S. Durand, Analysis of Best Response Dynamics in Potential Games, PhD thesis, Grenoble, 2018.

+ O. Brun and B.J. Prabhu, Worst-case analysis of non-cooperative load balancing, Ann. Oper. Res.,

239(2), 2016.
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The Joint Spectral Radius Approach

I For any x, y ∈ X , the Mean-Value Theorem implies that

‖x̂ (n)(y)− x̂ (n)(x)‖ =

∥∥∥∥∫ 1

0

Dx̂ (n)(x + th) · h dt
∥∥∥∥ , where h = y − x,

≤
∫ 1

0

∥∥∥Dx̂ (n)(x + th)
∥∥∥ ‖h‖ dt,

≤ ∅ (X )

∫ 1

0

∥∥∥∥∥
n∏

i=1

Dx̂ (1)(zi (t))

∥∥∥∥∥ dt,

≤ ∅ (X ) sup
Mi∈J

‖Mn . . .M1‖ ,

where J is the set of one-round Jacobian matrices

I Asymptotic convergence provided that products of n Jacobian
matrices converge in norm to 0 as n→∞ [MPXY07]

+ Mak et al., A new stability criterion for discrete-time neural networks: Nonlinear spectral radius, Chaos,

Solitons and Fractals, 31, 2007.

A/E/P/12, 4-5 July 2022, Grenoble 13 / 28



Joint Spectral Radius

I For a matrix M, the growth rate of ‖Mn‖ is characterized by the
spectral radius ρ(M): ρ(M)n = ρ(Mn) ≈ ‖Mn‖

I The Joint Spectral Radius [RS60] of J

ρ (J ) = lim sup
n→∞

max
Mi∈J

‖Mn . . .M1‖
1
n

coincides [BW92] with its Generalized Spectral Radius [DL92]

ρ̄ (J ) = lim sup
n→∞

max
Mi∈J

ρ(Mn . . .M1)
1
n

I Show that the JSR of the set J of one-round Jacobian matrices is
strictly smaller than 1

+ Rota & Strang, A note on the joint spectral radius, Indag. Math 22, 1960.

+ Berger & Wang, Bounded semigroups of matricess, Linear Algebra Appl., 166, 1992.

+ Daubechies & Lagarias, Sets of matrices all infinite products of which converge, Lin. Alg. and its App.,

161, 1992.
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Structure of Jacobian Matrices
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Structure of the Jacobian matrices
I x (u) is differentiable at every point x ∈ X such that no link is

marginally used by player u in its best-response at point x

I The Jacobian of x (u) at x ∈ X is defined as

Dx (u)(x) =



∂x
(u)
1

∂x1
(x) . . .

∂x
(u)
1

∂xu
(x) . . .

∂x
(u)
1

∂xK
(x)

...
. . .

...
∂x (u)

u

∂x1
(x) . . .

∂x (u)
u

∂xu
(x) . . .

∂x (u)
u

∂xK
(x)

...
. . .

...
∂x

(u)
K

∂x1
(x) . . .

∂x
(u)
K

∂xu
(x) . . .

∂x
(u)
K

∂xK
(x)


,

where the (v ,w)-block is

∂x
(u)
v

∂xw
(x) =

(
∂x

(u)
v ,i

∂xw ,j
(x)

)
i∈S,j∈S

,
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u
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. . .

...
∂x
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K

∂x1
(x) . . .

∂x
(u)
K

∂xu
(x) . . .

∂x
(u)
K

∂xK
(x)


,

where the (v ,w)-block is

∂x
(u)
v

∂xw
(x) =

(
∂x

(u)
v ,i

∂xw ,j
(x)

)
i∈S,j∈S

,

A/E/P/12, 4-5 July 2022, Grenoble 16 / 28



Structure of the Jacobian matrices

I x (u) is differentiable at every point x ∈ X such that no link is
marginally used by player u in its best-response at point x

I The Jacobian of x (u) at x ∈ X is defined as

Dx (u)(x) =



I . . . 0 . . . 0
...

. . .
...

∂x (u)
u

∂x1
(x) . . . 0 . . .

∂x (u)
u

∂xK
(x)

...
. . .

...
0 . . . 0 . . . I


,

where the (v ,w)-block is

∂x
(u)
v

∂xw
(x) =

(
∂x

(u)
v ,i

∂xw ,j
(x)

)
i∈S,j∈S

,

A/E/P/12, 4-5 July 2022, Grenoble 16 / 28



Structure of the Jacobian matrices

I x (u) is differentiable at every point x ∈ X such that no link is
marginally used by player u in its best-response at point x

I The Jacobian of x (u) at x ∈ X is defined as

Dx (u)(x) =


I . . . 0 . . . 0
...

. . .
...

Mu . . . 0 . . . Mu

...
. . .

...
0 . . . 0 . . . I

 ,

where the (v ,w)-block is

∂x
(u)
v

∂xw
(x) =

(
∂x

(u)
v ,i

∂xw ,j
(x)

)
i∈S,j∈S

,

A/E/P/12, 4-5 July 2022, Grenoble 16 / 28



Structure of the Jacobian matrices

I The matrix Mu can be derived from the equality of marginal costs
and the flow conservation constraint

I There exist γ,θ ∈ RS
+ such that Mu = [ΓB − I ] Θ

Mu =


γ1 . . . 0

...
. . .

...
0 . . . γS


1 . . . 1

...
. . .

...
1 . . . 1

−
1 . . . 0

...
. . .

...
0 . . . 1



θ1 . . . 0

...
. . .

...
0 . . . θS


I The vectors γ,θ are such that

∑
i γi = 1, θi = 0 if and only if

γi = 0 and 1
2 ≤ θi ≤ q < 1 if θi 6= 0
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...
...

. . .
...

γSθ1 γSθ2 . . . (γS − 1)θS


I The vectors γ,θ are such that

∑
i γi = 1, θi = 0 if and only if

γi = 0 and 1
2 ≤ θi ≤ q < 1 if θi 6= 0

A/E/P/12, 4-5 July 2022, Grenoble 17 / 28



One round Jacobian

I One round Jacobian: Dx̂ (1)(x) = Dx (K)(x) . . .Dx (1)(x)

I Example for two players

Dx̂ (1)(x) =

(
I 0
M2 0

)(
0 M1

0 I

)
=

(
0 M1

0 M2M1

)

I Example for three players

J =

I 0 0
0 I 0
M3 M3 0

 I 0 0
M2 0 M2

0 0 I

 0 M1 M1

0 I 0
0 0 I


=

0 M1 M1

0 M2M1 M2M1 + M2

0 M3(M1 + M2M1) M3(M1 + M2 + M2M1)


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Conjecture on JSR

Conjecture
The JSR of the set of one-round Jacobians is strictly smaller than one

I Numerical experiments suggest this is true

I If the conjecture is true, then it implies the convergence of the
best-response algorithm for routing games.
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Two-player routing game
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Two-player routing game

Theorem
For the two-player routing game, the sequential best-response dynamics
converges for any initial point x0 ∈ X .

Sketch of proof.

I The n-round Jacobian is of the form

J(n) =

(
0 M

(n)
1

0 M
(n)
2 M

(n)
1

)
. . .

(
0 M

(1)
1

0 M
(1)
2 M

(1)
1

)
=

(
0 M

(n)
1 M

(n−1)
2 . . .M

(1)
1

0 M
(n)
2 M

(n)
1 . . .M

(1)
1

)

I Show that the JSR of the set M of matrices of the form [ΓB − I ] Θ
is strictly smaller than 1
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Two-player routing game

I Any product M of such matrices is such that

I The sum over any column is zero,
I If Mx = λx for some λ 6= 0, then

∑
i xi = 0,

I For any diagonal D, ρ (M) ≤ ρ (DB + M) ≤ ‖DB + M‖1.

I With di,i = −min
j

(mi,j) or di,i = −max
j

(mi,j), we obtain

ρ (M) ≤ µmin(M) = −
∑
i

min
j

(mi,j)

ρ (M) ≤ µmax(M) =
∑
i

max
j

(mi,j)

I Induction: if M = X [ΓB − I ] Θ

µmin (M) ≤ θmax µmax(X ) and µmax (M) ≤ θmax µmin(X ).
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Two-player routing game

I If M =
∏n

k=1

[
Γ(k)B − I

]
Θ(k), then

ρ (M) ≤
n∏

k=1

θ(k)
max ≤ qn

I The JSR of M is upper bounded by q < 1

I Same result proved by Mertzios [Mer09] using a potential function
argument.
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Conclusion
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Conclusion

I Convergence of the sequential BR dynamics for atomic
routing games over parallel links

4 Systematic approach relying only on the structure of the
Jacobian matrices

4 We conjecture that the JSR of the set of one-round Jacobians
is strictly smaller than one

4 Proof of convergence in the case of two players

I Future works

4 Convergence for the routing game over two links for an
arbitrary number of players

4 Show that the conjecture is true in the general case
4 Extension to more general networks and to more complex BR

dynamics
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Questions?
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Two-link routing game

I If M ′ = (Γ′B − I ) Θ′ and M = (ΓB − I ) Θ, then MM ′ = tr(M)M ′

I For 3 players, the one-round Jacobian is of the form
J = A1 ⊗M1 + A2 ⊗M2, where

A1 =

0 1 1
0 r2 r2
0 r3(1 + r2) r3(1 + r2)

 and A2 =

0 0 0
0 0 1
0 0 r3


I The Jacobian over n rounds if of the form

J(n) = Z (n) . . .Z (2)A1 ⊗M1 + Z (n) . . .Z (2)A2 ⊗M2

where Z (n) = r
(n)
1 A

(n)
1 + r

(n)
2 A

(n)
2
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